30 Years of Lithium‐Ion Batteries

Over the past 30 years, significant commercial and academic progress has been made on Li-based battery technologies. From the early Li-metal anode iterations to the current commercial Li-ion batteries (LIBs), the story of the Li-based battery is full of breakthroughs and back tracing steps. This review will discuss the main roles of material science in the development of LIBs. As LIB research progresses and the materials of interest change, different emphases on the different subdisciplines of material science are placed. Early works on LIBs focus more on solid state physics whereas near the end of the 20th century, researchers began to focus more on the morphological aspects (surface coating, porosity, size, and shape) of electrode materials. While it is easy to point out which specific cathode and anode materials are currently good candidates for the next-generation of batteries, it is difficult to explain exactly why those are chosen. In this review, for the reader a complete developmental story of LIB should be clearly drawn, along with an explanation of the reasons responsible for the various technological shifts. The review will end with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.

[1]  Takashi Uchida,et al.  The Spinel Phases LiM y Mn2 − y O 4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries , 1996 .

[2]  Swapnil Jain,et al.  Emerging trends in battery technology , 2017 .

[3]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[4]  Alain Mauger,et al.  Minimization of the cation mixing in Li1+x(NMC)1-xO2 as cathode material , 2010 .

[5]  Ram A. Sharma,et al.  Thermodynamic Properties of the Lithium‐Silicon System , 1976 .

[6]  E. Garman,et al.  The mechanisms of nickel toxicity in aquatic environments: An adverse outcome pathway analysis , 2017, Environmental toxicology and chemistry.

[7]  Xiao‐Qing Yang,et al.  The Population of Oxygen Vacancies in Li1 + y Mn2 − y O 4 − δ Type Cathode Materials: The Primary Factor of Temperature Dependent Structural Changes , 2001 .

[8]  Gang Wang,et al.  Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy , 2016 .

[9]  Ki-Soo Lee,et al.  Structural and Electrochemical Properties of Layered Li [ Ni1 − 2x Co x Mn x ] O2 ( x = 0.1 – 0.3 ) Positive Electrode Materials for Li-Ion Batteries , 2007 .

[10]  Yunhong Zhou,et al.  Effects of different carbonate precipitators on LiNi1/3Co1/3Mn1/3O2 morphology and electrochemical performance , 2009 .

[11]  Takahisa Shodai,et al.  Study of Li3 − xMxN (M: Co, Ni or Cu) system for use as anode material in lithium rechargeable cells , 1996 .

[12]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[13]  Jiajun Chen,et al.  Recent Progress in Advanced Materials for Lithium Ion Batteries , 2013, Materials.

[14]  John T. Vaughey,et al.  The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes , 2004 .

[15]  Rosario Carbone,et al.  Energy Storage in the Emerging Era of Smart Grids , 2011 .

[16]  K. Nahm,et al.  Synthesis and Characterization of a New Spinel, Li1.02Al0.25Mn1.75 O 3.97 S 0.03, Operating at Potentials Between 4.3 and 2.4 V , 2000 .

[17]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[18]  G. Cao,et al.  Understanding electrochemical potentials of cathode materials in rechargeable batteries , 2016 .

[19]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[20]  Jeff Dahn,et al.  Rechargeable LiNiO2 / Carbon Cells , 1991 .

[21]  Rémi Dedryvère,et al.  Cycling Ability of γ-Butyrolactone-Ethylene Carbonate Based Electrolytes , 2003 .

[22]  J. Dahn,et al.  High‐Capacity Carbons Prepared from Phenolic Resin for Anodes of Lithium‐Ion Batteries , 1995 .

[23]  D. Aurbach,et al.  Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn‐Rich Cathodes for Li‐Ion Batteries , 2016 .

[24]  Emma Arfa Grunditz,et al.  Performance Analysis of Current BEVs Based on a Comprehensive Review of Specifications , 2016, IEEE Transactions on Transportation Electrification.

[25]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[26]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[27]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[28]  T. Ohsaki,et al.  Electrochemical intercalation of lithium into graphitized carbons , 1995 .

[29]  R. Jasinski,et al.  Analysis and distillation of propylene carbonate , 1967 .

[30]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[31]  Yang‐Kook Sun,et al.  Overcoming Jahn‐Teller Distortion for Spinel Mn Phase , 1999 .

[32]  A. Manthiram,et al.  Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries , 2001 .

[33]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[34]  Xiao-dong Guo,et al.  Cobalt-doped lithium-rich cathode with superior electrochemical performance for lithium-ion batteries , 2015 .

[35]  Miaofang Chi,et al.  Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study , 2011 .

[36]  Hyun-Kon Song,et al.  Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. , 2012, Angewandte Chemie.

[37]  Youyuan Huang,et al.  A high-performance hard carbon for Li-ion batteries and supercapacitors application , 2013 .

[38]  Jessika E. Trancik,et al.  Potential for widespread electrification of personal vehicle travel in the United States , 2016, Nature Energy.

[39]  A. West,et al.  A novel cathode Li2CoMn3O8 for lithium ion batteries operating over 5 volts , 1998 .

[40]  Jun Ho Song,et al.  Improved electrochemical and thermal properties of nickel rich LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode materials by SiO 2 coating , 2015 .

[41]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[42]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[43]  L. Zan,et al.  Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries , 2017, Nano Research.

[44]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[45]  A. Dey,et al.  Electrochemical Alloying of Lithium in Organic Electrolytes , 1971 .

[46]  J. Dahn,et al.  Synthesis and Characterization of Li1 + x Mn2 − x O 4 for Li‐Ion Battery Applications , 1996 .

[47]  Willett Kempton,et al.  Using fleets of electric-drive vehicles for grid support , 2007 .

[48]  R. Koksbang,et al.  Rechargeable lithium battery anodes: alternatives to metallic lithium , 1993 .

[49]  F. G. Keyes,et al.  THE POTENTIAL OF THE LITHIUM ELECTRODE. , 1913 .

[50]  A. Dey,et al.  The Electrochemical Decomposition of Propylene Carbonate on Graphite , 1970 .

[51]  T. Ohzuku,et al.  Electrochemistry and Structural Chemistry of LiNiO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1993 .

[52]  S. Okada,et al.  Thermal behavior of Li1-yNiO2 and the decomposition mechanism , 1998 .

[53]  Pooi See Lee,et al.  Hollow LiMn(2)O(4) nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances. , 2014, Small.

[54]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[55]  J. Eom,et al.  Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries , 2011 .

[56]  R. Huggins,et al.  Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials , 1980 .

[57]  J. Dahn,et al.  Layered Li[Ni[sub x]Co[sub 1−2x]Mn[sub x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries , 2001 .

[58]  J. Besenhard,et al.  Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts , 1974 .

[59]  J. Goodenough,et al.  Synthesis and structural characterization of the normal spinel Li[Ni2]O4 , 1985 .

[60]  C. C. Chan,et al.  The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles , 2007, Proceedings of the IEEE.

[61]  Jaephil Cho,et al.  Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries , 2017 .

[62]  F. J. Martino,et al.  Performance Characteristics of Solid Lithium‐Aluminum Alloy Electrodes , 1976 .

[63]  D. Vissers,et al.  A Preliminary Investigation of High Temperature Lithium/Iron Sulfide Secondary Cells , 1974 .

[64]  C. Delmas,et al.  Effects of aluminum on the structural and electrochemical properties of LiNiO2 , 2003 .

[65]  A. Ohta,et al.  High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material , 1993 .

[66]  Y. Nishi Lithium ion secondary batteries; past 10 years and the future , 2001 .

[67]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[68]  Jianming Zheng,et al.  Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material , 2015 .

[69]  Kun Feng,et al.  Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. , 2018, Small.

[70]  D. Aurbach,et al.  The Correlation Between the Surface Chemistry and the Performance of Li‐Carbon Intercalation Anodes for Rechargeable ‘Rocking‐Chair’ Type Batteries , 1994 .

[71]  M. Whittingham,et al.  Hydrothermal synthesis of lithium iron phosphate cathodes , 2001 .

[72]  Takao Inoue,et al.  Roles of positive or negative electrodes in the thermal runaway of lithium-ion batteries: Accelerating rate calorimetry analyses with an all-inclusive microcell , 2017 .

[73]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[74]  J. C. Hunter Preparation of a new crystal form of manganese dioxide: λ-MnO2 , 1981 .

[75]  D. Pimentel,et al.  Food Production and the Energy Crisis , 1973, Science.

[76]  H. Fujimoto,et al.  7Li nuclear magnetic resonance studies of hard carbon and graphite/hard carbon hybrid anode for Li i , 2011 .

[77]  K. Amine,et al.  Preparation and electrochemical investigation of LiMn2 − xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries , 1997 .

[78]  Ya‐Xia Yin,et al.  Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries , 2017, Science China Chemistry.

[79]  K. Ryan,et al.  High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. , 2014, Nano letters.

[80]  David Banister,et al.  Realizing the electric-vehicle revolution , 2012 .

[81]  Christopher S. Johnson,et al.  Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries , 2007 .

[82]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[83]  Zhian Zhang,et al.  Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film , 2016 .

[84]  K. Amine,et al.  Kinetics Tuning of Li-Ion Diffusion in Layered Li(NixMnyCoz)O2. , 2015, Journal of the American Chemical Society.

[85]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[86]  K. T. Chau,et al.  An overview of energy sources for electric vehicles , 1999 .

[87]  K. Amine,et al.  OLIVINE LICOPO4 AS 4.8 V ELECTRODE MATERIAL FOR LITHIUM BATTERIES , 1999 .

[88]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[89]  Kyung Min Jeong,et al.  Effects of Capacity Ratios between Anode and Cathode on Electrochemical Properties for Lithium Polymer Batteries , 2015 .

[90]  Jaephil Cho,et al.  Electrochemical Stability of Thin-Film LiCoO2 Cathodes by Aluminum-Oxide Coating , 2003 .

[91]  J. Tarascon,et al.  Li Metal‐Free Rechargeable Batteries Based on Li1 + x Mn2 O 4 Cathodes ( 0 ≤ x ≤ 1 ) and Carbon Anodes , 1991 .

[92]  Karl Georg Høyer,et al.  The History of Alternative Fuels in Transportation: The Case of Electric and Hybrid Cars , 2008 .

[93]  Yongyao Xia,et al.  High Power Lithium-ion Battery based on Spinel Cathode and Hard Carbon Anode , 2017 .

[94]  A. Manthiram,et al.  Role of Chemical and Structural Stabilities on the Electrochemical Properties of Layered LiNi1 ∕ 3Mn1 ∕ 3Co1 ∕ 3O2 Cathodes , 2005 .

[95]  J. Yamaki,et al.  Ethylene carbonate/ether mixed solvents electrolyte for lithium batteries , 1984 .

[96]  Ji‐Guang Zhang,et al.  Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization , 2017 .

[97]  J. Besenhard Cycling behaviour and corrosion of Li-Al electrodes in organic electrolytes , 1978 .

[98]  Xiangming He,et al.  Recent advances in layered LiNixCoyMn1−x−yO2 cathode materials for lithium ion batteries , 2009 .

[99]  G. Eichinger Cathodic decomposition reactions of propylene carbonate , 1976 .

[100]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[101]  Marshall C. Smart,et al.  Electrochemical Behavior of Layered Solid Solution Li2MnO3−LiMO2 (M = Ni, Mn, Co) Li-Ion Cathodes with and without Alumina Coatings , 2011 .

[102]  F. Dampier The Cathodic Behavior of CuS , MoO3, and MnO2 in Lithium Cells , 1974 .

[103]  Min-Joon Lee,et al.  Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. , 2015, Angewandte Chemie.

[104]  Weishan Li,et al.  Improving high voltage stability of lithium cobalt oxide/graphite battery via forming protective films simultaneously on anode and cathode by using electrolyte additive , 2014 .

[105]  Dominique Guyomard,et al.  Self-discharge of LiMn2O4/C Li-ion cells in their discharged state: Understanding by means of three-electrode measurements , 1998 .

[106]  Jonathan J. Travis,et al.  Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes , 2014 .

[107]  K. Du,et al.  Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating , 2016 .

[108]  D. Murphy,et al.  Topochemical reactions of rutile related structures with lithium , 1978 .

[109]  Jinbao Zhao,et al.  The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries , 2015 .

[110]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[111]  Yongsong Luo,et al.  Nanosilicon anodes for high performance rechargeable batteries , 2017 .

[112]  Callie W. Babbitt,et al.  Economies of scale for future lithium-ion battery recycling infrastructure , 2014 .

[113]  T. Abe,et al.  Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries: Atomic Force Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions , 2001 .

[114]  C. Delmas,et al.  Electrochemical and physical properties of the LixNi1$minus;yCoyO2 phases , 1992 .

[115]  J. Besenhard,et al.  High energy density lithium cellsPart I. Electrolytes and anodes , 1976 .

[116]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[117]  P. Bro,et al.  Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte , 1974 .

[118]  Costas Elmasides,et al.  Separators for Lithium‐Ion Batteries: A Review on the Production Processes and Recent Developments , 2015 .

[119]  Jinhui Li,et al.  Recycling of Spent Lithium-Ion Battery: A Critical Review , 2014 .

[120]  J. Tu,et al.  Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method , 2013 .

[121]  S. Okada,et al.  Low temperature synthesis and electrochemical characteristics of LiFeO2 cathodes , 1997 .

[122]  C. Clastres Smart grids: Another step towards competition, energy security and climate change objectives , 2011 .

[123]  Xiqian Yu,et al.  Structural changes and thermal stability of charged LiNixMnyCozO₂ cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. , 2014, ACS applied materials & interfaces.

[124]  Peter Lamp,et al.  High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode , 2016 .

[125]  M. Froment,et al.  Behavior of Secondary Lithium and Aluminum‐Lithium Electrodes in Propylene Carbonate , 1980 .

[126]  Ali Ghorbani Kashkooli,et al.  Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes , 2016 .

[127]  Matthew Li,et al.  Compact high volumetric and areal capacity lithium sulfur batteries through rock salt induced nano-architectured sulfur hosts , 2017 .

[128]  Xiaolong Deng,et al.  Stabilizing the Electrode/Electrolyte Interface of LiNi0.8Co0.15Al0.05O2 through Tailoring Aluminum Distribution in Microspheres as Long-Life, High-Rate, and Safe Cathode for Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[129]  Xijin Xu,et al.  Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries , 2017 .

[130]  Ilias Belharouak,et al.  Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications , 2003 .

[131]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties , 2001 .

[132]  A. Yamaji,et al.  Ethylene carbonate—propylene carbonate mixed electrolytes for lithium batteries , 1984 .

[133]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[134]  Qingsong Wang,et al.  Improving the electrochemical performance of Ni-rich cathode material LiNi 0.815 Co 0.15 Al 0.035 O 2 by removing the lithium residues and forming Li 3 PO 4 coating layer , 2017 .

[135]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[136]  Zi-kui Liu,et al.  Ti-substituted Li[Li0.26Mn0.6−xTixNi0.07Co0.07]O2 layered cathode material with improved structural stability and suppressed voltage fading , 2015 .

[137]  J. Goodenough,et al.  Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. , 2011, Journal of the American Chemical Society.

[138]  K. Amine,et al.  Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li(1.2)Ni(0.2)Mn(0.6)O2 cathode material for lithium ion batteries. , 2015, Nano letters.

[139]  Yongyao Xia,et al.  Suppressing the Phase Transition of the Layered Ni-Rich Oxide Cathode during High-Voltage Cycling by Introducing Low-Content Li2MnO3. , 2016, ACS applied materials & interfaces.

[140]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[141]  Chong Seung Yoon,et al.  Advanced Concentration Gradient Cathode Material with Two‐Slope for High‐Energy and Safe Lithium Batteries , 2015 .

[142]  F. C. Laman,et al.  Effect of discharge current on cycle life of a rechargeable lithium battery , 1988 .

[143]  Wangda Li,et al.  Overcoming the chemical instability on exposure to air of Ni-rich layered oxide cathodes by coating with spinel LiMn1.9Al0.1O4 , 2016 .

[144]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[145]  Dong‐Won Kim,et al.  High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries , 2013 .

[146]  Liping Li,et al.  Conductivity and electrochemical performance of cathode xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 (x = 0.1, 0.2, 0.3, 0.4) at different temperatures , 2013 .

[147]  J. Tarascon,et al.  Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95 O 4 Electrodes , 1999 .

[148]  Tsutomu Ohzuku,et al.  Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries , 1995 .

[149]  Jin-Woo Jung,et al.  Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration , 2014 .

[150]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[151]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[152]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[153]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[154]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[155]  Yun-Sung Lee,et al.  Research Progress on Negative Electrodes for Practical Li‐Ion Batteries: Beyond Carbonaceous Anodes , 2015 .

[156]  Marshall C. Smart,et al.  Lithium Plating Behavior in Lithium-Ion Cells , 2010 .

[157]  Marca M. Doeff,et al.  A review of Ni-based layered oxides for rechargeable Li-ion batteries , 2017 .

[158]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[159]  Min Gyu Kim,et al.  A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. , 2015, Nano letters.

[160]  T. P. Kumar,et al.  Safety mechanisms in lithium-ion batteries , 2006 .

[161]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[162]  R. Holze,et al.  Modified natural graphite as anode material for lithium ion batteries , 2002 .

[163]  Y. Baba,et al.  Thermal stability of LixCoO2 cathode for lithium ion battery , 2002 .

[164]  Willett Kempton,et al.  Electric vehicles: Driving range , 2016, Nature Energy.

[165]  Kenji Fukuda,et al.  Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material , 2000 .

[166]  Weiguo Song,et al.  Tin‐Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High‐Performance Anode Material in Lithium‐Ion Batteries , 2008 .

[167]  E. Olivetti,et al.  Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals , 2017 .

[168]  Bruce Edsall Seely,et al.  The Electric Vehicle and the Burden of History , 2002 .

[169]  M. Fowler,et al.  Multi-Particle Model for a Commercial Blended Lithium-Ion Electrode , 2016 .

[170]  H. Farhangi,et al.  The path of the smart grid , 2010, IEEE Power and Energy Magazine.

[171]  Zhongwei Chen,et al.  Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries , 2015, Nature Communications.

[172]  Chaoyang Wang,et al.  Electrochemical Energy : Advanced Materials and Technologies , 2015 .

[173]  B. Scrosati,et al.  A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes , 1980 .

[174]  Y. Nishi The development of lithium ion secondary batteries. , 2001 .

[175]  M. Whittingham,et al.  Nanotechnology for environmentally sustainable electromobility. , 2016, Nature nanotechnology.

[176]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[177]  Kenville E. Hendrickson,et al.  Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes , 2015 .

[178]  Clare P. Grey,et al.  Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation , 2016 .

[179]  Hubert A. Gasteiger,et al.  Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries , 2017 .

[180]  Izumi Taniguchi,et al.  Preparation of LiCoPO 4/C nanocomposite cathode of lithium batteries with high rate performance , 2011 .

[181]  Yang-Kook Sun,et al.  Role of surface coating on cathode materials for lithium-ion batteries , 2010 .

[182]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[183]  Seung-wook Eom,et al.  Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test , 2008 .

[184]  Hajime Arai,et al.  Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti) , 1997 .

[185]  M. Wohlfahrt‐Mehrens,et al.  Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1−x(Ni1−y−zCoyMz)O2 (M = Al, Mg) , 2003 .

[186]  J. Dahn,et al.  Li-insertion in hard carbon anode materials for Li-ion batteries , 1999 .

[187]  J. Dahn,et al.  Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins , 1996 .

[188]  P. Bennekou,et al.  Cobalt metabolism and toxicology--a brief update. , 2012, The Science of the total environment.

[189]  W. D. Jones,et al.  Hybrids to the rescue [hybrid electric vehicles] , 2003 .

[190]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[191]  J. Dahn,et al.  LiNiVO4: A 4.8 Volt Electrode Material for Lithium Cells , 1994 .

[192]  N. Kalaiselvi,et al.  Studies on LiNi0.7Al0.3−xCoxO2 solid solutions as alternative cathode materials for lithium batteries , 2004 .

[193]  J. B. Taylor,et al.  The molicel® rechargeable lithium system: Multicell aspects , 1987 .

[194]  R. Jasinski,et al.  Thermal Stability of a Propylene Carbonate Electrolyte , 1970 .

[195]  H. A. Christopher,et al.  Lithium‐Aluminum Electrode , 1977 .

[196]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[197]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .

[198]  Yang-Kook Sun,et al.  Synthesis of Spherical Nano- to Microscale Core−Shell Particles Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2 and Their Applications to Lithium Batteries , 2006 .

[199]  L. Gaines,et al.  COSTS OF LITHIUM-ION BATTERIES FOR VEHICLES , 2000 .

[200]  Bruno Scrosati,et al.  History of lithium batteries , 2011 .

[201]  Jeff Dahn,et al.  Structure and electrochemistry of LixMnyNi1−yO2 , 1992 .

[202]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[203]  J. Colin,et al.  First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. , 2013, Nano letters.

[204]  J. J. Murray,et al.  Electrochemical Intercalation of Lithium into Graphite , 1993 .

[205]  Richard van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[206]  Jianming Zheng,et al.  High Energy Density Lithium–Sulfur Batteries: Challenges of Thick Sulfur Cathodes , 2015 .

[207]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[208]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[209]  Xuemei Zhao,et al.  Impact of Al or Mg substitution on the Thermal Stability of Li1.05Mn1.95 − z M z O4 (M = Al or Mg) , 2010 .

[210]  K. M. Abraham,et al.  Suppression of Toxic Compounds Produced in the Decomposition of Lithium-Ion Battery Electrolytes , 2004 .

[211]  R. Holze,et al.  Carbon anode materials for lithium ion batteries , 2003 .

[212]  M. Whittingham Electrointercalation in transition-metal disulphides , 1974 .

[213]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[214]  A. Mabuchi A Survey on the Carbon Anode Materials for Rechargeable Lithium Batteries (炭素材料と電気化学 ) , 1994 .

[215]  Ilias Belharouak,et al.  Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications , 2004 .

[216]  Arunachala Mada Kannan,et al.  High Capacity Surface-Modified LiCoO2 Cathodes for Lithium-Ion Batteries , 2003 .

[217]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[218]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[219]  Faisal M. Alamgir,et al.  Comparative Study of the Capacity and Rate Capability of LiNi y Mn y Co1–2y O2 (y = 0.5, 0.45, 0.4, 0.33) , 2011 .

[220]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[221]  Subbarao Surampudi,et al.  Analysis of Redox Additive‐Based Overcharge Protection for Rechargeable Lithium Batteries , 1991 .

[222]  Pierre Kubiak,et al.  Calendar aging of a 250 kW/500 kWh Li-ion battery deployed for the grid storage application , 2017 .

[223]  Kyung-Keun Lee,et al.  Characterization of LiNi0.85Co0.10M0.05O2 (M = Al, Fe) as a cathode material for lithium secondary batteries , 2001 .

[224]  Chem. , 2020, Catalysis from A to Z.

[225]  Doron Aurbach,et al.  Electrode–solution interactions in Li-ion batteries: a short summary and new insights , 2003 .

[226]  C. Delmas,et al.  The cycling properties of the LixNi1-yCoyO2 electrode , 1993 .

[227]  J. Dahn,et al.  Can All the Lithium be Removed from T 2 ­ Li2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 ? , 2001 .

[228]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[229]  Yusheng XUE,et al.  Energy internet or comprehensive energy network? , 2015 .

[230]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[231]  Boucar Diouf,et al.  Potential of lithium-ion batteries in renewable energy , 2015 .

[232]  John B Goodenough,et al.  Evolution of strategies for modern rechargeable batteries. , 2013, Accounts of chemical research.

[233]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[234]  Stefano Passerini,et al.  Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. , 2015, ChemSusChem.

[235]  G. Ceder,et al.  Factors that affect Li mobility in layered lithium transition metal oxides , 2006 .

[236]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[237]  J. Dahn,et al.  O2 Structure Li2 / 3 [ Ni 1 / 3 Mn 2 / 3 ] O 2: A New Layered Cathode Material for Rechargeable Lithium Batteries. I. Electrochemical Properties , 2000 .

[238]  Gerbrand Ceder,et al.  A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2 , 2003 .

[239]  P. Kumta,et al.  Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries , 2007 .

[240]  B. Borie,et al.  Alkali Metal-Nickel Oxides of the Type MNiO2 , 1954 .

[241]  J. Dahn,et al.  O 2‐Type Li2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2: A New Layered Cathode Material for Rechargeable Lithium Batteries II. Structure, Composition, and Properties , 2000 .

[242]  J. Xie,et al.  Single‐Crystalline LiMn2O4 Nanotubes Synthesized Via Template‐Engaged Reaction as Cathodes for High‐Power Lithium Ion Batteries , 2011 .

[243]  Matthew B. Pinson,et al.  Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction , 2012, 1210.3672.

[244]  Min Gyu Kim,et al.  Recent Progress in Nanostructured Cathode Materials for Lithium Secondary Batteries , 2010 .

[245]  John B. Goodenough,et al.  Lithium insertion into Fe2(SO4)3 frameworks , 1989 .

[246]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[247]  Wangda Li,et al.  Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries , 2017, Nature Communications.

[248]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[249]  J. Tarascon,et al.  An update of the Li metal-free rechargeable battery based on Li1+χMn2O4 cathodes and carbon anodes , 1993 .

[250]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[251]  Michael Woodhouse,et al.  Clean Energy Manufacturing Analysis Center (CEMAC) 2015 Research Highlights , 2016 .

[252]  M. Whittingham,et al.  The lithium intercalates of the transition metal dichalcogenides , 1975 .

[253]  David Rooney,et al.  3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery , 2017, Nature Communications.

[254]  M. Wakihara,et al.  Enhancement of Rate Capability in Graphite Anode by Surface Modification with Zirconia , 2002 .

[255]  Richard T. Haasch,et al.  Surface Characterization of Electrodes from High Power Lithium-Ion Batteries , 2002 .

[256]  J. Yamaki,et al.  The cathodic decomposition of propylene carbonate in lithium batteries , 1987 .

[257]  C. C. Chan,et al.  The state of the art of electric and hybrid vehicles , 2002, Proc. IEEE.

[258]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[259]  Meyer,et al.  Heavy metal toxicities: levels of nickel, cobalt and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop , 1973 .

[260]  Doron Aurbach,et al.  Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries , 2017 .

[261]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[262]  Yong Yang,et al.  Recent progress in research on high-voltage electrolytes for lithium-ion batteries. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[263]  J. Besenhard The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes , 1976 .

[264]  Masaki Yoshio,et al.  Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part IV. High and low temperature performance of LiMn2O4 , 1997 .