Highly sensitive piezoresistance behaviors of n-type 3C-SiC nanowires

We reported the piezoresistance behaviors of n-type 3C-SiC nanowires, which show that the present SiC nanowires could be an excellent candidate for building robust pressure sensors with high sensitivities.

[1]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[2]  E. Sakuma,et al.  High‐temperature electrical properties of 3C‐SiC epitaxial layers grown by chemical vapor deposition , 1984 .

[3]  E. Sakuma,et al.  Schottky barrier diodes on 3C‐SiC , 1985 .

[4]  A. Kurtz,et al.  Characterization of n-type beta -SiC as a piezoresistor , 1993 .

[5]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[6]  C. Harmans,et al.  Observation of Landau levels at the InAs(110) surface by scanning tunneling spectroscopy , 1997 .

[7]  Iijima,et al.  Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon , 1998, Science.

[8]  Franco Cacialli,et al.  Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes , 1999 .

[9]  Susumu Sugiyama,et al.  Analysis of piezoresistance in n-type β-SiC for high-temperature mechanical sensors , 2002 .

[10]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[11]  Irena Knezevic,et al.  Electronic transport in nanometre-scale silicon-on-insulator membranes , 2006, Nature.

[12]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[13]  Lianmao Peng,et al.  Current-voltage characteristics and parameter retrieval of semiconducting nanowires , 2006 .

[14]  Ruqian Wu,et al.  Giant piezoresistance and its origin in Si(111) nanowires : First-principles calculations , 2007 .

[15]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[16]  Alistair Rowe,et al.  Silicon nanowires feel the pinch. , 2008, Nature nanotechnology.

[17]  Qingliang Liao,et al.  Controllable fabrication and electromechanical characterization of single crystalline Sb-doped ZnO nanobelts , 2008 .

[18]  X. Bai,et al.  In situ probing electrical response on bending of ZnO nanowires inside transmission electron microscope , 2008 .

[19]  J. Milne,et al.  Giant piezoresistance effects in silicon nanowires and microwires. , 2010, Physical review letters.

[20]  Yue Zhang,et al.  Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts , 2010 .

[21]  Julien Reboud,et al.  Electrically controlled giant piezoresistance in silicon nanowires. , 2010, Nano letters.

[22]  Jinju Zheng,et al.  Temperature-Dependent Field Emission Properties of 3C-SiC Nanoneedles , 2011 .

[23]  Large piezoresistance of single silicon nano-needles induced by non-uniaxial strain , 2011 .

[24]  Jinju Zheng,et al.  Piezoresistance behaviors of p-type 6H-SiC nanowires. , 2011, Chemical communications.

[25]  First-Principles Simulation on Piezoresistivity in Alpha and Beta Silicon Carbide Nanosheets , 2011 .

[26]  Yuefei Zhang,et al.  Piezoresistance behaviors of ultra-strained SiC nanowires , 2012 .

[27]  K. Zhou,et al.  Growth of tapered SiC nanowires on flexible carbon fabric : toward field emission applications , 2012 .

[28]  Jinju Zheng,et al.  Synthesis of n-type SiC nanowires with tailored doping levels , 2013 .