Synthesis of novel p-tert-butyl-calix(4)arene derivatives and their cation binding ability: chromogenic effect upon side arms binding

[1]  D. Reinhoudt,et al.  Synthesis Beyond the Molecule , 2002, Science.

[2]  I. Leray,et al.  Synthesis and photophysical and cation-binding properties of mono- and tetranaphthylcalix[4]arenes as highly sensitive and selective fluorescent sensors for sodium. , 2001, Chemistry.

[3]  Yu Liu,et al.  Complexation Thermodynamics of p-tert-Butylcalix[4]arene Derivatives with Light Lanthanoid Nitrates in Acetonitrile , 2001 .

[4]  Huimin Ma,et al.  A Highly Selective Calix[4]arene-Based Chromoionophore for Ni2+ , 2001 .

[5]  Yu Liu,et al.  Molecular design of calixarenes. Part 3. Complexation thermodynamics of light lanthanoid nitrates with a novel p-tert-butylcalix[4]arene Schiff base in acetonitrile: an enhanced Eu3+ selectivity by side-arm ligation , 2001 .

[6]  Suk-Kyu Chang,et al.  A new Hg(2+)-selective chromoionophore based on calix[4]arenediazacrown ether. , 2001, Chemical communications.

[7]  O. Wolfbeis,et al.  New longwave absorbing chromogenic calix[4]arene for calcium determination in aqueous environment , 2000 .

[8]  Kim,et al.  Synthesis and metal ion complexation studies of proton-ionizable calix , 2000, The Journal of organic chemistry.

[9]  Yu Liu,et al.  Novel o-Phenylenediseleno Bridged Bis (β-cyclodextrin)s Complexes with Platinum(IV) and Palladium(II) Ions , 1999 .

[10]  Yong Chen,et al.  Molecular Recognition Studies on Supramolecular Systems. 25. Inclusion Complexation by Organoselenium-Bridged Bis(β-cyclodextrin)s and Their Platinum(IV) Complexes , 1999 .

[11]  R. Bartsch,et al.  A Calixarene-Based Fluorogenic Reagent for Selective Mercury(II) Recognition. , 1999, Analytical chemistry.

[12]  Y. Kubo BINAPHTHYL-APPENDED CHROMOGENIC RECEPTORS : SYNTHESIS AND APPLICATION TO THEIR COLORIMETRIC RECOGNITION OF AMINES , 1999 .

[13]  D. Reinhoudt,et al.  Conformationally flexible calix[4]arene chromoionophores: optical transduction of soft metal ion complexation by cation-pi interactions , 1999 .

[14]  R. Dabestani,et al.  Calix[4]arene-based Cs+ selective optical sensor , 1999 .

[15]  K. Bleicher,et al.  Diffusion Edited NMR: Screening Compound Mixtures by Affinity NMR to Detect Binding Ligands to Vancomycin , 1998 .

[16]  R. Cleverley,et al.  Thermodynamics of Calixarene Chemistry. , 1998, Chemical reviews.

[17]  Suk-Kyu Chang,et al.  Calix[4]arenes Bearing Two Distal Azophenol Moieties: Highly Selective Chromogenic Ionophores for the Recognition of Ca2+ Ion , 1998 .

[18]  Bao-hang Han,et al.  Molecular Recognition Study on Supramolecular System. 14.1 Synthesis of Modified Cyclodextrins and Their Inclusion Complexation Thermodynamics with l-Tryptophan and Some Naphthalene Derivatives , 1998 .

[19]  G. Gokel Advances in Supramolecular Chemistry , 1997 .

[20]  Wen-Chun Zhang,et al.  Synthesis of 4-tert-Butylcalix[4]arenes Bearing Two Schiff-Base Units at the Lower Rim , 1997 .

[21]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[22]  Sumio Tokita,et al.  Colorimetric chiral recognition by a molecular sensor , 1996, Nature.

[23]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[24]  R. Nolte,et al.  Binding of porphyrins in cyclodextrin dimers , 1996 .

[25]  S. Shinkai,et al.  Molecular Design of Chromogenic Calix[4]crowns Which Show Very High Na+ Selectivity , 1995 .

[26]  V. Böhmer Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[27]  W. Vogt,et al.  A calixarene-based chromoionophore for the larger alkali metals , 1995 .

[28]  S. Shinkai,et al.  Recent Topics on Functionalization and Recognition Ability of Calixarenes: The ‘Third Host Molecule’ , 1995 .

[29]  D. Reinhoudt,et al.  Synthesis, Complexation, and Membrane Transport Studies of 1,3-Alternate Calix[4]arene-crown-6 Conformers: A New Class of Cesium Selective Ionophores , 1995 .

[30]  S. Maruyama,et al.  Molecular recognition of butylamines by a binaphthyl-derived chromogenic calix[4]crown , 1995 .

[31]  F. Arnaud-Neu,et al.  Extraction and solution thermodynamics of complexation of alkali and alkaline-earth cations by calix[4]arene amides , 1995 .

[32]  D. Diamond Calixarene-based sensing agents , 1996 .

[33]  B. Ágai,et al.  Chromogenic calix[4]arene as ionophore for potentiometric and optical sensors. , 1994, Talanta.

[34]  Minoru Nakamura,et al.  A uranyl ion-sensitive chromoionophore based on calix[6]arene , 1994 .

[35]  D. Diamond,et al.  Chromogenic ligands for lithium based on calix[4]arene tetraesters bearing nitrophenol residues , 1993 .

[36]  S. Shinkai Calixarenes - the third generation of supramolecules , 1993 .

[37]  Y. Kubo,et al.  Synthesis of a 1,3-bis(indoaniline)-derived calix[4]arene as an optical sensor for calcium ion , 1993 .

[38]  E. Nomura,et al.  Syntheses and NMR behavior of calix[4]quinone and calix[4]hydroquinone , 1992 .

[39]  D. Diamond,et al.  Novel chromogenic ligands for lithium and sodium based on calix[4]arene tetraesters , 1992 .

[40]  Katsuhira Yoshida,et al.  New chromoionophores based on indoaniline dyes containing calix[4]arene , 1991 .

[41]  S. Shinkai,et al.  Chromogenic Calix[4]arene , 1991 .

[42]  P. Nieto,et al.  Carbon-13 NMR chemical shifts. A single rule to determine the conformation of calix[4]arenes , 1991 .

[43]  S. Harris,et al.  Chemically modified calix[4]arenes. Regioselective synthesis of 1,3-(distal) derivatives and related compounds. X-Ray crystal structure of a diphenol-dinitrile , 1991 .

[44]  E. Nomura,et al.  Selective Ion Extraction by a Calix[6]arene Derivative Containing Azo Groups , 1989 .

[45]  R. Breslow,et al.  Very strong binding of appropriate substrates by cyclodextrin dimers , 1989 .

[46]  S. Shinkai,et al.  Autoaccelerative diazo coupling with calix[4]arene: unusual co-operativity of the calixarene hydroxy groups , 1989 .

[47]  Tetsuya Nakamura,et al.  Molecular design of the electron-donating sidearm of lariat ethers: effective coordination of the quinoline moiety in complexation toward alkali-metal cations , 1988 .

[48]  G. Gokel,et al.  Mechanism of complexation of sodium(1+) with N-pivot-lariat 15-crown-5 ethers in methanol at 25.degree.C , 1987 .

[49]  V. J. Gatto,et al.  Solid-state structural chemistry of lariat ether and BiBLE cation complexes: metal-ion identity and coordination number determine cavity size , 1986 .

[50]  K. Takagi,et al.  Cation-binding properties of new armed macrocyclic host molecules and their applications to phase-transfer reactions and cation membrane transport , 1986 .

[51]  G. Gokel,et al.  Stability constants, enthalpies, and entropies for metal ion-lariat ether interactions in methanol solution , 1984 .

[52]  G. Gokel,et al.  Macrocyclic polyether syntheses , 1982 .

[53]  D. Reinhoudt,et al.  Stability and reactivity of crown-ether complexes , 1981 .

[54]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .