Supraconvergence and Supercloseness of a Scheme for Elliptic Equations on Nonuniform Grids

In this paper, we study the convergence of a finite difference scheme on nonuniform grids for the solution of second-order elliptic equations with mixed derivatives and variable coefficients in polygonal domains subjected to Dirichlet boundary conditions. We show that the scheme is equivalent to a fully discrete linear finite element approximation with quadrature. It exhibits the phenomenon of supraconvergence, more precisely, for s ∈ [1,2] order O(h s )-convergence of the finite difference solution, and its gradient is shown if the exact solution is in the Sobolev space H 1+s (Ω). In the case of an equation with mixed derivatives in a domain containing oblique boundary sections, the convergence order is reduced to O(h 3/2−ε) with ε > 0 if u ∈ H 3(Ω). The second-order accuracy of the finite difference gradient is in the finite element context nothing else than the supercloseness of the gradient. For s ∈ {1,2}, the given error estimates are strictly local.

[1]  T. A. Manteuffel,et al.  Numerical solution of partial differential equations on irregular grids , 1987 .

[2]  Some Gradient Superconvergence Results in the Finite Element Method , 1989 .

[3]  Ivan Hlaváček,et al.  How to recover the gradient of linear elements on nonuniform triangulations , 1996 .

[4]  Boško S. Jovanović The finite difference method for boundary-value problems with weak solutions , 1993 .

[5]  Petr N. Vabishchevich,et al.  Second-order accurate finite-difference schemes on nonuniform grids , 1998 .

[6]  Boško Jovanović,et al.  Fractional Order Convergence Rate Estimates Of Finite Difference Method On Nonuniform Meshes , 2001 .

[7]  Frank de Hoog,et al.  On the rate of convergence of finite difference schemes on nonuniform grids , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[8]  Alexander Zlotnik,et al.  On Superconvergence of a Gradient for Finite Element Methods for an Elliptic Equation with the Nonsmooth Right–hand Side , 2002 .

[9]  Andrew B. White,et al.  Supra-convergent schemes on irregular grids , 1986 .

[10]  Pekka Neittaanmäki,et al.  Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .

[11]  J. M. Sanz-Serna,et al.  A finite difference formula for the discretization of d^3/dx^3 on nonuniform grids , 1991 .

[12]  Nick Levine,et al.  Superconvergent Recovery of the Gradient from Piecewise Linear Finite-element Approximations , 1985 .

[13]  Peter A. Forsyth,et al.  Quadratic convergence for cell-centered grids , 1988 .

[14]  Bosco García-Archilla,et al.  A supraconvergent scheme for the Korteweg-de Vries equation , 1992 .

[15]  Rolf Dieter Grigorieff,et al.  Supraconvergence of a finite difference scheme for solutions in Hs(0, L) , 2005 .

[16]  Vladimir L. Makarov,et al.  On the convergence of difference schemes for the approximation of solutionsu ∈ W2m (m>0.5) of elliptic equations with mixed derivatives , 1984 .

[17]  P. R. Turner Numerical Analysis and Parallel Processing , 1989 .

[18]  Boško S. Jovanović Finite Difference Schemes for Partial Differential Equations with Weak Solutions and Irregular Coefficients , 2004 .

[19]  I. Hlavácek,et al.  On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type , 1987 .

[20]  Ivan Hlaváček,et al.  On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition , 1987 .

[21]  A. A. Samarskiĭ Theorie der Differenzenverfahren , 1984 .

[22]  L. A. Rukhovets,et al.  Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary , 1969 .

[23]  Pekka Neittaanmäki,et al.  Bibliography on superconvergence , 1998 .

[24]  Pekka Neittaanmäki,et al.  On a global superconvergence of the gradient of linear triangular elements , 1987 .

[25]  Rolf Dieter Grigorieff Some Stability Inequalities for Compact Finite Difference Schemes , 1988 .

[26]  Rolf Dieter Grigorieff,et al.  On the supraconvergence of elliptic finite difference schemes , 1998 .

[27]  Thomas A. Manteuffel,et al.  The numerical solution of second-order boundary value problems on nonuniform meshes , 1986 .

[28]  R. Noyé,et al.  Numerical Solutions of Partial Differential Equations , 1983 .

[29]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[30]  Finite difference approximations of generalized solutions , 1985 .

[31]  Global and Asymptotic Stability of Operator-Difference Schemes , 2004 .