Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex

Autophagy is a membrane trafficking to vacuole/lysosome induced by nutrient starvation. In Saccharomyces cerevisiae, Tor protein, a phosphatidylinositol kinase-related kinase, is involved in the repression of autophagy induction by a largely unknown mechanism. Here, we show that the protein kinase activity of Apg1 is enhanced by starvation or rapamycin treatment. In addition, we have also found that Apg13, which binds to and activates Apg1, is hyperphosphorylated in a Tor-dependent manner, reducing its affinity to Apg1. This Apg1–Apg13 association is required for autophagy, but not for the cytoplasm-to-vacuole targeting (Cvt) pathway, another vesicular transport mechanism in which factors essential for autophagy (Apg proteins) are also employed under vegetative growth conditions. Finally, other Apg1-associating proteins, such as Apg17 and Cvt9, are shown to function specifically in autophagy or the Cvt pathway, respectively, suggesting that the Apg1 complex plays an important role in switching between two distinct vesicular transport systems in a nutrient-dependent manner.

[1]  J. Broach,et al.  Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast , 1999, The EMBO journal.

[2]  K. Arndt,et al.  Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. , 1996, Genes & development.

[3]  S. Emr,et al.  Cytoplasm to vacuole trafficking of aminopeptidase I requires a t‐SNARE–Sec1p complex composed of Tlg2p and Vps45p , 1999, The EMBO journal.

[4]  D. Klionsky,et al.  Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Y. Ohsumi,et al.  Isolation and characterization of autophagy‐defective mutants of Saccharomyces cerevisiae , 1993, FEBS letters.

[6]  A. Matsuura,et al.  Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. , 1997, Gene.

[7]  D. Klionsky,et al.  Genetic and Phenotypic Overlap between Autophagy and the Cytoplasm to Vacuole Protein Targeting Pathway* , 1996, The Journal of Biological Chemistry.

[8]  D. Klionsky,et al.  Vacuolar import of proteins and organelles from the cytoplasm. , 1999, Annual review of cell and developmental biology.

[9]  Takeshi Noda,et al.  Tor, a Phosphatidylinositol Kinase Homologue, Controls Autophagy in Yeast* , 1998, The Journal of Biological Chemistry.

[10]  E. Craig,et al.  Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. , 1996, Genetics.

[11]  G. Thomas,et al.  TOR signalling and control of cell growth. , 1997, Current opinion in cell biology.

[12]  J. Avruch,et al.  Regulation of Translational Effectors by Amino Acid and Mammalian Target of Rapamycin Signaling Pathways , 1999, The Journal of Biological Chemistry.

[13]  A. Schmidt,et al.  Starvation Induces Vacuolar Targeting and Degradation of the Tryptophan Permease in Yeast , 1999, The Journal of cell biology.

[14]  D. Klionsky,et al.  Two Distinct Pathways for Targeting Proteins from the Cytoplasm to the Vacuole/Lysosome , 1997, The Journal of cell biology.

[15]  A. Schmidt,et al.  The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease , 1998, The EMBO journal.

[16]  J. Heitman,et al.  The TOR signaling cascade regulates gene expression in response to nutrients. , 1999, Genes & development.

[17]  J. Kunz,et al.  Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression , 1993, Cell.

[18]  U. Jung,et al.  The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. , 1995, Genes & development.

[19]  I. Mori,et al.  Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. , 1994, Genes & development.

[20]  S. Schreiber,et al.  Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  T. Noda,et al.  Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. , 1995, Biochemical and biophysical research communications.

[22]  A. Matsuura,et al.  Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. , 1997, Gene.

[23]  G. Fink,et al.  Methods in yeast genetics , 1979 .

[24]  C. Kaiser,et al.  Physiological Regulation of Membrane Protein Sorting Late in the Secretory Pathway of Saccharomyces cerevisiae , 1997, The Journal of cell biology.

[25]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[26]  H. Tokumitsu,et al.  Identification of mouse ULK1, a novel protein kinase structurally related to C. elegans UNC-51. , 1998, Biochemical and biophysical research communications.

[27]  Michael N. Hall,et al.  The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors , 1999, Nature.