Intrarow Weed Removal in Broccoli and Transplanted Lettuce with an Intelligent Cultivator

The performance of the Robovator (F. Poulsen Engineering ApS, Hvalsø, Denmark), a commercial robotic intrarow cultivator, was evaluated in direct-seeded broccoli and transplanted lettuce during 2014 and 2015 in Salinas, CA, and Yuma, AZ. The main objective was to evaluate the crop stand after cultivation, crop yield, and weed control efficacy of the Robovator compared with a standard cultivator. A second objective was to compare hand weeding time after cultivation within a complete integrated weed management (IWM) system. Herbicides were included as a component of the IWM system. The Robovator did not reduce crop stand or marketable yield compared with the standard cultivator. The Robovator removed 18 to 41% more weeds at moderate to high weed densities and reduced hand-weeding times by 20 to 45% compared with the standard cultivator. At low weed densities there was little difference between the cultivators in terms of weed control and hand-weeding times. The lower-hand weeding time with the Robovator treatments suggest that robotic intrarow cultivators can reduce dependency on hand weeding compared with standard cultivators. Technological advancements and price reductions of these types of machines will likely improve their weed removal efficacy and the long-term viability of IWM programs that will use them. Nomenclature: Broccoli, Brassica oleracea L. ‘Marathon'; lettuce, Lactuca sativa L. ‘Sunbelt'. El desempeño del Robovator (F. Poulsen Engineering ApS, Hvalsø, Denmark), un cultivador robótico comercial para uso dentro de las hileras de siembra, fue evaluado en brócoli de siembra directa y lechuga trasplantada durante 2014 y 2015 en Salinas, California y Yuma, Arizona. El objetivo principal fue evaluar el cultivo establecido después de la labranza, el rendimiento del cultivo, y la eficacia para el control de malezas del Robovator, al compararse con un cultivador estándar. Un segundo objetivo fue comparar el tiempo de deshierba manual después de la labranza dentro de un sistema de manejo integrado de malezas (IWM) completo. Se incluyó herbicidas como un componente del sistema IWM. El Robovator no redujo el número de plantas del cultivo establecidas ni el rendimiento comercializable al compararse con el cultivador estándar. El Robovator eliminó 18 a 41% más malezas en densidades de moderadas a altas y redujo el tiempo de deshierba manual en 30 a 45% al compararse con el cultivador estándar. A bajas densidades hubo pocas diferencias entre los cultivadores en términos de control de malezas y tiempos de deshierba manual. El mejor tiempo de deshierba manual con los tratamientos con Robovator sugiere que cultivadores robóticos para uso dentro de las hileras de siembra pueden reducir la dependencia en la deshierba manual en comparación con cultivadores estándar. Los avances tecnológicos y las reducciones en precio de este tipo de máquinas probablemente mejorará la eficacia en la remoción de malezas y la viabilidad en el largo plazo de los programas IWM que los usen.

[1]  Saied Mostaghimi,et al.  Monitoring Pesticide and Nitrate in Virginia’s Groundwater—A Pilot Study , 1995 .

[2]  C. Bell Broccoli (Brassica oleracea var. botrytis) Yield Loss from Italian Ryegrass (Lolium perenne) Interference , 1995, Weed Science.

[3]  J. Taylor,et al.  The End of Farm Labor Abundance , 2012, The Farm Labor Problem.

[4]  Hao Sun Automatic GPS-Based Intra-Row Weed Control System for Transplanted Row Crops , 2012 .

[5]  David C. Slaughter,et al.  Co-robotic intra-row weed control system , 2014 .

[6]  N. D. Tillett,et al.  Mechanical within-row weed control for transplanted crops using computer vision , 2008 .

[7]  Hans W. Griepentrog,et al.  Automated intelligent rotor tine cultivation and punch planting to improve the selectivity of mechanical intra-row weed control , 2012 .

[8]  Farm Advisor,et al.  Multispectral Machine Vision Identification of Lettuce and Weed Seedlings for Automated Weed Control , 2008 .

[9]  A. Showler Effects of compost and chicken litter on soil nutrition, and sugarcane physiochemistry, yield, and injury caused by Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae) ☆ , 2015 .

[10]  Bo Melander,et al.  Intelligent versus non-intelligent mechanical intra-row weed control in transplanted onion and cabbage , 2015 .

[11]  R. Gast Industry Views of Minor Crop Weed Control , 2008, Weed Technology.

[12]  Jan Willem Hofstee,et al.  Field Applications of Automated Weed Control: Northwest Europe , 2014 .

[13]  Steven A. Fennimore,et al.  Evaluation and Economics of a Rotating Cultivator in Bok Choy, Celery, Lettuce, and Radicchio , 2014 .

[14]  Steven A. Fennimore,et al.  Field Applications of Automated Weed Control: Western Hemisphere , 2014 .

[15]  S. Fennimore,et al.  Weed Management in Lettuce (Lactuca Sativa) with Preplant Irrigation1 , 2006, Weed Technology.

[16]  Steven A. Fennimore,et al.  Evaluation and Economics of a Machine-Vision Guided Cultivation Program in Broccoli and Lettuce , 2010, Weed Technology.

[17]  Steven A. Fennimore,et al.  The Challenges of Specialty Crop Weed Control, Future Directions , 2008, Weed Technology.

[18]  B. Mou Mutations in Lettuce Improvement , 2012, International journal of plant genomics.

[19]  R. Y. van der Weide,et al.  Innovation in mechanical weed control in crop rows , 2008 .

[20]  D. C. Cloutier,et al.  Mechanical weed management. , 2007 .