Representation of Fourier Integral Operators Using Shearlets

[1]  L. Grafakos Classical and modern Fourier analysis , 2003 .

[2]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[3]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[4]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[5]  D. Labate,et al.  Resolution of the wavefront set using continuous shearlets , 2006, math/0605375.

[6]  Hart F. Smith A Hardy space for Fourier integral operators , 1998 .

[7]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[8]  Peter D. Lax,et al.  Asymptotic solutions of oscillatory initial value problems , 1957 .

[9]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[10]  M. Czubak,et al.  PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.

[11]  Gitta Kutyniok,et al.  The Uncertainty Principle Associated with the Continuous Shearlet Transform , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[12]  Y. Meyer,et al.  Wavelets: Calderon-Zygmund operators and multilinear operators , 1997 .

[13]  G. Easley,et al.  Sparse directional image representations using the discrete shearlet transform , 2008 .

[14]  Wang-Q Lim,et al.  Wavelets with composite dilations , 2004 .

[15]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[16]  D. Labate,et al.  Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .

[17]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[18]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[19]  Wang-Q Lim,et al.  The Theory of Wavelets with Composite Dilations , 2006 .

[20]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[21]  Y. Meyer,et al.  Wavelets: Calderón-Zygmund and Multilinear Operators , 1997 .

[22]  Hart F. Smith A parametrix construction for wave equations with $C^{1,1}$ coefficients , 1998 .

[23]  Wang-Q Lim,et al.  Wavelets with composite dilations and their MRA properties , 2006 .

[24]  E. Candès New tight frames of curvelets and optimal representations of objects with C² singularities , 2002 .

[25]  Christopher D. Sogge,et al.  Fourier integrals in classical analysis: Index , 1993 .