Representation of Fourier Integral Operators Using Shearlets
暂无分享,去创建一个
[1] L. Grafakos. Classical and modern Fourier analysis , 2003 .
[2] Demetrio Labate,et al. Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..
[3] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[4] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[5] D. Labate,et al. Resolution of the wavefront set using continuous shearlets , 2006, math/0605375.
[6] Hart F. Smith. A Hardy space for Fourier integral operators , 1998 .
[7] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[8] Peter D. Lax,et al. Asymptotic solutions of oscillatory initial value problems , 1957 .
[9] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[10] M. Czubak,et al. PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.
[11] Gitta Kutyniok,et al. The Uncertainty Principle Associated with the Continuous Shearlet Transform , 2008, Int. J. Wavelets Multiresolution Inf. Process..
[12] Y. Meyer,et al. Wavelets: Calderon-Zygmund operators and multilinear operators , 1997 .
[13] G. Easley,et al. Sparse directional image representations using the discrete shearlet transform , 2008 .
[14] Wang-Q Lim,et al. Wavelets with composite dilations , 2004 .
[15] P. Casazza. THE ART OF FRAME THEORY , 1999, math/9910168.
[16] D. Labate,et al. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .
[17] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[18] G. Weiss,et al. Littlewood-Paley Theory and the Study of Function Spaces , 1991 .
[19] Wang-Q Lim,et al. The Theory of Wavelets with Composite Dilations , 2006 .
[20] E. Candès,et al. The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.
[21] Y. Meyer,et al. Wavelets: Calderón-Zygmund and Multilinear Operators , 1997 .
[22] Hart F. Smith. A parametrix construction for wave equations with $C^{1,1}$ coefficients , 1998 .
[23] Wang-Q Lim,et al. Wavelets with composite dilations and their MRA properties , 2006 .
[24] E. Candès. New tight frames of curvelets and optimal representations of objects with C² singularities , 2002 .
[25] Christopher D. Sogge,et al. Fourier integrals in classical analysis: Index , 1993 .