An Empirical Comparison of Rule Induction Using Feature Selection with the LEM2 Algorithm

The main objective of this paper is to compare a strategy to rule induction based on feature selection with another strategy, not using feature selection, exemplified by the LEM2 algorithm. It is shown that LEM2 significantly outperforms the strategy or rule induction based on feature selection in terms of an error rate (5% significance level, two-tailed test). At the same time, the LEM2 algorithm induces smaller rule sets with the smaller total number of conditions as well.

[1]  Ron Kohavi,et al.  Wrappers for feature selection , 1997 .

[2]  Peter A. Flach,et al.  Rule induction , 2003 .

[3]  Jerzy W. Grzymala-Busse,et al.  Rough sets : New horizons in commercial and industrial AI , 1995 .

[4]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[5]  Jerzy W. Grzymala-Busse,et al.  Global discretization of continuous attributes as preprocessing for machine learning , 1996, Int. J. Approx. Reason..

[6]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[7]  Hiroshi Motoda,et al.  Computational Methods of Feature Selection , 2022 .

[8]  Lior Rokach,et al.  Data Mining and Knowledge Discovery Handbook, 2nd ed , 2010, Data Mining and Knowledge Discovery Handbook, 2nd ed..

[9]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[10]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[11]  Jerzy W. Grzymala-Busse,et al.  A New Version of the Rule Induction System LERS , 1997, Fundam. Informaticae.

[12]  Masoud Nikravesh,et al.  Feature Extraction - Foundations and Applications , 2006, Feature Extraction.

[13]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[14]  Jerzy W. Grzymala-Busse,et al.  Handling Missing Attribute Values , 2010, Data Mining and Knowledge Discovery Handbook.

[15]  Jerzy W. Grzymala-Busse,et al.  Leukemia Prediction from Gene Expression Data-A Rough Set Approach , 2006, ICAISC.

[16]  Jerzy W. Grzymala-Busse,et al.  LERS-A System for Learning from Examples Based on Rough Sets , 1992, Intelligent Decision Support.

[17]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[18]  Jerzy W. Grzymala-Busse,et al.  Mining of MicroRNA Expression Data - A Rough Set Approach , 2006, RSKT.

[19]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[20]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.