Conjugate gradient type methods for semilinear elliptic problems with symmetry

We study block conjugate gradient methods in the context of continuation methods for bifurcation problems. By exploiting symmetry in certain semilinear elliptic differential equations, we can decompose the problems into small ones and reduce computational cost. On the other hand, the associated centered difference discretization matrices on the subdomains are nonsymmetric. We symmetrize them by using simple similarity transformations and discuss some basic properties concerning the discretization matrices. These properties allow the discrete pure mode solution paths branching from a multiple bifurcation point [0, λm,n] of the centered difference analogue of the original problem to be represented by the solution path branching from the first simple bifurcation point (0, μ1,1) of the counterpart of the reduced problem. Thus, the structure of a multiple bifurcation is preserved in discretization, while its treatment is reduced to those for simple bifurcation of problems on subdomains. In particular, we can adapt the continuation-Lanczos algorithm proposed in [1] to trace simple solution paths. Sample numerical results are reported.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  C.-S. Chien,et al.  Mode Jumping In The Von Kármán Equations , 2000, SIAM J. Sci. Comput..

[3]  Layne T. Watson,et al.  Preconditioned Iterative Methods for Homotopy Curve Tracking , 1992, SIAM J. Sci. Comput..

[4]  D. Book,et al.  Steady-State Distributions of Interacting Discrete Vortices , 1975 .

[5]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[6]  C. Bischof Incremental condition estimation , 1990 .

[7]  Layne T. Watson,et al.  Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.

[8]  Layne T. Watson,et al.  Preconditioned iterative methods for sparse linear algebra problems arising in circuit simulation , 1994 .

[9]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[10]  E. Allgower,et al.  Conjugate gradient methods for continuation problems II , 1991 .

[11]  Z. Mei,et al.  Path following around corank-2 bifurcation pints of a semi-linear elliptic problem with symmetry , 1991 .

[12]  Y. Saad,et al.  On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .

[13]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[14]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[15]  B. Parlett A new look at the Lanczos algorithm for solving symmetric systems of linear equations , 1980 .

[16]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[17]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[18]  L. Watson,et al.  HOMPACK: a suite of codes for globally convergent homotopy algorithms. Technical report No. 85-34 , 1985 .

[19]  T. Chan Deflation Techniques and Block-Elimination Algorithms for Solving Bordered Singular Systems , 1984 .

[20]  H. Keller Lectures on Numerical Methods in Bifurcation Problems , 1988 .

[21]  A. Fässler,et al.  Group Theoretical Methods and Their Applications , 1992 .

[22]  H. Walker,et al.  GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..

[23]  Bryan D. Davidson,et al.  Large-Scale Continuation and Numerical Bifurcation for Partial Differential Equations , 1997 .

[24]  C.-S. Chien,et al.  Lanczos‐type Methods for Continuation Problems , 1997 .

[25]  Layne T. Watson,et al.  Experiments with Conjugate Gradient Algorithms for Homotopy Curve Tracking , 1991, SIAM J. Optim..

[26]  Gene H. Golub,et al.  Matrix computations , 1983 .