Hybrid Method Based on NARX models and Machine Learning for Pattern Recognition

This work presents a novel technique that integrates the methodologies of machine learning and system identification to solve multiclass problems. Such an approach allows to extract and select sets of representative features with reduced dimensionality, as well as predicts categorical outputs. The efficiency of the method was tested by running case studies investigated in machine learning, obtaining better absolute results when compared with classical classification algorithms. Resumo: O presente trabalho apresenta uma nova técnica que integra as metodologias de aprendizado de máquinas e identificação de sistemas na solução de problemas multiclasses. A abordagem permite extrair e selecionar conjuntos de caracteŕısticas representativas com dimensionalidade reduzida, da mesma forma que prediz sáıdas categóricas. A eficiência do método é testada pela aplicação em estudos de casos estudados no aprendizado de máquina, obtendo melhores resultados absolutos em comparação aos algoritmos clássicos de classificação.

[1]  Paulo F. Ribeiro,et al.  Real-time voltage sag detection and classification for power quality diagnostics , 2020 .

[2]  Steve A. Billings,et al.  Term and variable selection for non-linear system identification , 2004 .

[3]  Liao Zhang,et al.  Recursive clustering K-nearest neighbors algorithm and the application in the classification of power quality disturbances , 2017, 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2).

[4]  Shulin Wang,et al.  Feature selection in machine learning: A new perspective , 2018, Neurocomputing.

[5]  L. A. Aguirre,et al.  Cluster analysis of NARMAX models for signal-dependent systems , 1998 .

[6]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[7]  Stephen A. Billings,et al.  A novel logistic-NARX model as a classifier for dynamic binary classification , 2017, Neural Computing and Applications.

[8]  Thais M. Mendes,et al.  A model validation scale based on multiple indices , 2017 .

[9]  Erivelton G. Nepomuceno,et al.  A lower bound error for free-run simulation of the polynomial NARMAX , 2016 .

[10]  Luc Boullart,et al.  Genetic programming: principles and applications , 2001 .

[11]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[12]  E. G. Nepomuceno,et al.  Classificação de Distúrbios na Qualidade de Energia Usando Modelagem Logística-NARX Multinomial , 2020 .

[13]  Om P. Malik,et al.  Detection and classification of power quality disturbances in noisy conditions , 2003 .