Reactivity of Dirhodium Analogues of Octaborane-12 and Decaborane-14 towards Transition-Metal Moieties

Building upon the key results of our earlier work on rhodaboranes, we continue to explore the chemistry of two nido-rhodaborane clusters, [(Cp*Rh)2B8H12] (1) and [(Cp*Rh)2B6H10] (2) with [Au(PPh3)Cl] that yielded [(Cp*Rh)2(AuPPh3)2B8H10] (3) and isomeric [(Cp*Rh)2(AuPPh3)2B6H8] (4a,b) respectively. The reactivity of 2 with [Au(PPh3)Cl] was rather unusual. In 3 Au exhibits a regular μ2-bonding mode, while in 4a,b there is a μ3-bonding with a Au–Rh bond. Further, the reactivity of 2 was performed with [Fe2(CO)9] that permitted the isolation of 12-vertex [(Cp*Rh)2B6H6{Fe(CO)2}2{Fe(CO)3}2] (5), 7-vertex [(Cp*Rh)2{Fe(CO)3}2B3H3] (6), and the heterometallic compound [(Cp*Rh)2{Fe(CO)3}2(μ3-CO)2] (7) in moderate to good yields. The cluster core of 5 consists of a 10-vertex isocloso geometry with two additional {Fe(CO)3} vertices capping two trigonal faces. Cluster 6 contains a capped-octahedral geometry, where one of the boron atoms is in the capping position. All of the compounds have been characterized by IR an...

[1]  D. Roy,et al.  Boron beyond the icosahedral barrier: a 16-vertex metallaborane. , 2013, Angewandte Chemie.

[2]  D. Roy,et al.  Synthesis and structure of dirhodium analogue of octaborane-12 and decaborane-14. , 2012, Inorganic chemistry.

[3]  S. Mobin,et al.  Synthesis and characterization of hypoelectronic tantalaboranes: comparison of the geometric and electronic structures of [(Cp*TaX)2B5H11] (X = Cl, Br, and I). , 2012, Inorganic chemistry.

[4]  S. Mobin,et al.  Synthesis and structural characterization of new divanada- and diniobaboranes containing chalcogen atoms. , 2012, Chemistry.

[5]  S. Tussupbayev,et al.  A mechanistic study of the utilization of arachno-diruthenaborane [(Cp*RuCO)2B2H6] as an active alkyne-cyclotrimerization catalyst. , 2012, Chemistry.

[6]  Sundargopal Ghosh,et al.  C-H activation of arenes and heteroarenes by early transition metallaborane, [(Cp*Ta)2B5H11] (Cp* = η5-C5Me5). , 2011, Chemical communications.

[7]  B. Varghese,et al.  Synthesis, characterization, and electronic structure of new type of heterometallic boride clusters. , 2011, Inorganic chemistry.

[8]  B. Varghese,et al.  From metallaborane to borylene complexes: syntheses and structures of triply bridged ruthenium and tantalum borylene complexes. , 2010, Chemistry.

[9]  S. Mobin,et al.  Chemistry of molybdaboranes: synthesis, structures, and characterization of a new class of open-cage dimolybdaheteroborane clusters. , 2010, Inorganic chemistry.

[10]  B. Varghese,et al.  Chemistry of vanadaboranes: synthesis, structures, and characterization of organovanadium sulfide clusters with disulfido linkage. , 2010, Inorganic chemistry.

[11]  S. Mobin,et al.  Fine tuning of metallaborane geometries: chemistry of metallaboranes of early transition metals derived from metal halides and monoborane reagents. , 2009, Chemistry.

[12]  G. Pramanik,et al.  An Efficient Route to Group 6 and 8 Metallaborane Compounds: Synthesis of arachno-[Cp*Fe(CO)B3H8] and closo-[(Cp*M)2B5H9] (M = Mo, W) , 2009 .

[13]  B. Varghese,et al.  Unusual Open Eight-Vertex Oxamolybdaboranes: Structural Characterizations of (η5-C5Me5Mo)2B5(μ3-OEt)H6R (R = H and n-BuO) , 2009 .

[14]  S. Mobin,et al.  Metallaboranes of the Early Transition Metals: Direct Synthesis and Characterization of [{(eta5-C5Me5)Ta}2BnHm] (n=4, m=10; n=5, m=11), [{(eta5-C5Me5)Ta}2B5H10(C6H4CH3)], and [{(eta5-C5Me5)TaCl}2B5H11]. , 2008, Chemistry.

[15]  M. Fabra,et al.  Reversible ethylene dihydrogen mediated 11-vertex nido --> closo --> nido conversion in a metallathiaborane cluster. , 2008, Journal of the American Chemical Society.

[16]  T. Fehlner,et al.  Expansion of iridaborane clusters by addition of monoborane. Novel metallaboranes and mechanistic detail. , 2008, Dalton transactions.

[17]  A. Vega,et al.  Linked and Fused Tungstaborane Clusters: Synthesis, Characterization, and Electronic Structures ofbis-{(η5-C5Me5W)2B5H8}2and (η5-C5Me5W)2{Fe(CO)3}nB6-nH10-n,n= 0, 1† , 2007 .

[18]  T. Fehlner,et al.  Condensed metallaborane clusters: synthesis and structure of Fe2(CO)6(eta5-C5Me5RuCO)(eta5-C5Me5Ru)B6H10. , 2005, Chemical communications.

[19]  T. Fehlner,et al.  Metallaborane Reaction Chemistry. nido-Dirhodapentaborane Isomer Structures and Stabilities and Utilization of Dirhodaboranes as Catalysts for Alkyne Cyclotrimerization , 2002 .

[20]  L. Sneddon,et al.  Transition-Metal-Promoted Reactions of Boron Hydrides. 16. Platinum- and Palladium-Catalyzed Olefin Addition and Olefin Dehydrogenative Borylation Reactions of arachno-6,8-C2B7H13: Syntheses and Structural Characterizations of 7-R-arachno-6,8-C2B7H12 and 7-(trans-R-CHCH)-arachno-6,8-C2B7H12 , 2000 .

[21]  T. Fehlner,et al.  Chemistry of Dimetallaboranes Derived from the Reaction of [Cp*MCl2]2 with Monoboranes (M = Ru, Rh; Cp* = η5-C5Me5) , 1999 .

[22]  C. Housecroft Transition metal boride clusters at the molecular level , 1995 .

[23]  C. Housecroft Boranes and metallaboranes : structure, bonding and reactivity , 1994 .

[24]  P. Jelliss,et al.  Synthesis and crystal structure of the gold-carborane anion[11-endo-{Au(PPh3)}-7,9-Me2-nido-7,9-C2B10H10]- , 1993 .

[25]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[26]  C. Housecroft Boron Atoms in Transition Metal Clusters , 1991 .

[27]  T. Fehlner,et al.  Isoelectronic Organometallic Molecules , 1990 .

[28]  A. J. Welch,et al.  Gold–boron chemistry. Part 3. The synthesis, characterisation, and molecular structure of [(H11C6)3PAu]2B8H10. Comments on the ‘anomalous’ structure of B8H12 , 1990 .

[29]  R. V. Parish,et al.  Gold–boron chemistry. Part 2. The interaction of {AuP(C6H11)3} bridges with decaboranyl cages: the accurate structure of [5,6-µ-{AuP(C6H11)3}-nido-B10H13], and the synthesis and molecular and electronic structures of its conjugate base [5,6,9,10-µ4-{AuP(C6H11)3}-nido-B10H12]– , 1990 .

[30]  E. Hamilton,et al.  Synthesis and molecular structure of [10-endo-(Ph3PAu)-7,8-nido-C2B9H11]- : structural patterns in [C2B9H11X]- anions (X=H+, AuPPH3+, CuPPh3+) , 1990 .

[31]  D. Mingos,et al.  Gold-197 Mössbauer spectra and the bonding of some gold–gold and gold–platinum clusters , 1989 .

[32]  D. Reed,et al.  Gold–boron chemistry. Part 1. Synthetic, structural, and spectroscopic studies on the compounds [5,6-µ-(AuPR3)-nido-B10H13](R = cyclo-C6H11 or C6H4Me-2) , 1987 .

[33]  N. Alcock,et al.  [(2‐3)Pentaboran(9)yl](triphenylphosphine)gold(I), [Au(B5H8)(C18H15P)] , 1985 .

[34]  Dietmar Seyferth,et al.  Comprehensive Organometallic Chemistry , 1984 .

[35]  P. Woodward,et al.  Replacement of hydrido-ligands in triruthenium complexes by triphenylphosphinegold groups. Crystal structures of [AuRu3(µ-COMe)(CO)10(PPh3)], [AuRu3(µ-H)2(µ3-COMe)(CO)9(PPh3)], and [Au3Ru3(µ3-COMe)(CO)9(PPh3)3] , 1983 .

[36]  R. Grimes Boron Clusters with Transition Metal-Hydrogen Bonds , 1982 .

[37]  T. Greenhough,et al.  An arachno-metallacarbaborane containing intermolecular hydrogen bridges. Crystal and molecular structure of bis-[11-triphenylphosphine-11-argenta-5,6-dicarbaundecaborane(11)] , 1980 .

[38]  N. N. Greenwood,et al.  Copper(I), silver(I), and gold(I) complexes with nido-pentaborane anions , 1978 .

[39]  R. Grimes Structure and stereochemistry in metalloboron cage compounds , 1978 .

[40]  N. N. Greenwood The synthesis, structure, and chemical reactions of metalloboranes , 1977 .

[41]  K. Wade Structural and Bonding Patterns in Cluster Chemistry , 1976 .

[42]  S. Shore,et al.  2,3-µ-Bis(triphenylphosphine)cuprio-pentaborane(9), -1-methylpentaborane(9), and -4-methylpentaborane(9) , 1975 .

[43]  N. N. Greenwood,et al.  Metalloboranes and metal–boron bonding , 1974 .

[44]  S. Lippard,et al.  Transition metal borohydride complexes. III. Structure of octahydrotriboratobis(triphenylphosphine)copper(I) , 1969 .

[45]  M. Hawthorne,et al.  Metallocene analogs of copper, gold, and palladium derived from the (3)-1,2-dicarbollide ion , 1968 .