Chain Rules for Smooth Min- and Max-Entropies

The chain rule for the Shannon and von Neumann entropy, which relates the total entropy of a system to the entropies of its parts, is of central importance to information theory. Here, we consider the chain rule for the more general smooth min- and max-entropies, used in one-shot information theory. For these entropy measures, the chain rule no longer holds as an equality. However, the standard chain rule for the von Neumann entropy is retrieved asymptotically when evaluating the smooth entropies for many identical and independently distributed states.

[1]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[2]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[3]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[4]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[5]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[8]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[9]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[10]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[11]  M. Berta Single-shot Quantum State Merging , 2009, 0912.4495.

[12]  Adam D. Smith,et al.  Leftover Hashing Against Quantum Side Information , 2010, IEEE Transactions on Information Theory.

[13]  R. Renner,et al.  The uncertainty principle in the presence of quantum memory , 2009, 0909.0950.

[14]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[15]  F. Dupuis The decoupling approach to quantum information theory , 2010, 1004.1641.

[16]  Severin Winkler,et al.  Impossibility of growing quantum bit commitments. , 2011, Physical review letters.

[17]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2011, Nature.

[18]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[19]  Theory of Quantum Information ( Fall 2011 ) Lecture 21 : Alternate characterizations of the completely bounded trace norm , .