A randomized algorithm for nonlinear model structure selection
暂无分享,去创建一个
[1] Sean R. Anderson,et al. Computational system identification for Bayesian NARMAX modelling , 2013, Autom..
[2] Alberto Leva,et al. NARX-based technique for the modelling of magneto-rheological damping devices , 2002 .
[3] Peter J. Fleming,et al. Time and frequency domain identification and analysis of a gas turbine engine , 2002 .
[4] George W. Irwin,et al. Prediction- and simulation-error based perceptron training: Solution space analysis and a novel combined training scheme , 2007, Neurocomputing.
[5] Luigi Piroddi,et al. A novel randomized approach to nonlinear system identification , 2014, 53rd IEEE Conference on Decision and Control.
[6] Marcello Farina,et al. Identification of polynomial input/output recursive models with simulation error minimisation methods , 2012, Int. J. Syst. Sci..
[7] L. A. Aguirre,et al. EFFECTS OF THE SAMPLING TIME ON THE DYNAMICS AND IDENTIFICATION OF NONLINEAR MODELS , 1995 .
[8] Kang Li,et al. Nonlinear modeling of NO/sub x/ emission in a coal-fired power generation plant , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[9] S. Billings,et al. VARIABLE SELECTION IN NON-LINEAR SYSTEMS MODELLING , 1999 .
[10] Sean R. Anderson,et al. Structure detection and parameter estimation for NARX models in a unified EM framework , 2012, Autom..
[11] R. Tempo,et al. Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .
[12] George W. Irwin,et al. A fast nonlinear model identification method , 2005, IEEE Transactions on Automatic Control.
[13] S. Billings,et al. Algorithms for minimal model structure detection in nonlinear dynamic system identification , 1997 .
[14] Lennart Ljung,et al. Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..
[15] Dale E. Seborg,et al. Application of a general multi-model approach for identification of highly nonlinear processes-a case study , 1993 .
[16] S. Geer. Least Squares Estimation , 2005 .
[17] Mario Sznaier,et al. Randomized Algorithms for Analysis and Control of Uncertain Systems with Applications, Second Edition, Roberto Tempo, Giuseppe Calafiore, Fabrizio Dabbene (Eds.). Springer-Verlag, London (2013), 357, ISBN: 978-1-4471-4609-4 , 2014, Autom..
[18] Sheng Chen,et al. Model selection approaches for non-linear system identification: a review , 2008, Int. J. Syst. Sci..
[19] Sheng Chen,et al. Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .
[20] C J Harris,et al. Sparse Kernel Regression Modelling using combined locally regularised orthogonal least squares and D-Optimality , 2003 .
[21] Luigi Piroddi,et al. SEISMIC BEHAVIOUR OF BUTTRESS DAMS: NON-LINEAR MODELLING OF A DAMAGED BUTTRESS BASED ON ARX/NARX MODELS , 2001 .
[22] Marcello Farina,et al. Black box model identification of nonlinear input–output models: A Wiener–Hammerstein benchmark , 2012 .
[23] Heinz Unbehauen,et al. Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..
[24] L. A. Aguirre,et al. Prediction and simulation errors in parameter estimation for nonlinear systems , 2010 .
[25] Johan A. K. Suykens,et al. Wiener-Hammerstein Benchmark , 2009 .
[26] David Rees,et al. Nonlinear gas turbine modeling using NARMAX structures , 2001, IEEE Trans. Instrum. Meas..
[27] L. Piroddi,et al. A pruning method for the identification of polynomial NARMAX models , 2003 .
[28] L. A. Aguirre,et al. Dynamical effects of overparametrization in nonlinear models , 1995 .
[29] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[30] S. Billings,et al. Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .
[31] I. J. Leontaritis,et al. Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .
[32] Carlos M. Fonseca,et al. 'Identifying the structure of nonlinear dynamic systems using multiobjective genetic programming , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.
[33] L. A. Aguirre,et al. Use of a priori information in the identification of global nonlinear models-a case study using a buck converter , 2000 .
[34] Stephen A. Billings,et al. An iterative orthogonal forward regression algorithm , 2015, Int. J. Syst. Sci..
[35] S. Billings. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains , 2013 .
[36] Stephen A. Billings,et al. Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information , 2008, Int. J. Model. Identif. Control..
[37] Chin-Hsiung Loh,et al. ANALYSIS OF NONLINEAR SYSTEM USING NARMA MODELS , 1996 .
[38] L. Piroddi,et al. NARX model selection based on simulation error minimisation and LASSO , 2010 .
[39] L. Piroddi,et al. An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .