Wavelet bases in H(div) and H(curl)

Some years ago, compactly supported divergence-free wavelets have been constructed which also give rise to a stable (biorthogonal) wavelet splitting of H(div). These bases have successfully been used both in the analysis and numerical treatment of the Stokes- and Navier-Stokes equations. In this paper, we construct stable wavelet bases for the stream function spaces H(curl). Moreover, curl-free vector wavelets are constructed and analysed. The relationship between H(div) and H(curl) are expressed in terms of these wavelets. We obtain discrete (orthogonal) Hodge decompositions. Our construction works independently of the space dimension, but in terms of general assumptions on the underlying wavelet systems in L^2(\Omega) that are used as building blocks. We give concrete examples of such bases for tensor product and certain more general domains $\Omega\subset\er^n$. As an application, we obtain wavelet multilevel preconditioners in H(div) and H(curl). EMAIL:: urban@dragon.ian.pv.cnr.it KEYWORDS:: H(div), H(curl), stream function spaces, wavelets

[1]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[2]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[3]  Claudio Canuto,et al.  The wavelet element method. Part II: Realization and additional features in 2D and 3D , 1997 .

[4]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[5]  Karsten Urban,et al.  On divergence-free wavelets , 1995, Adv. Comput. Math..

[6]  R. S. Falk,et al.  PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .

[7]  Albert Cohen,et al.  Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.

[8]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[9]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[12]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[13]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[14]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[15]  P. Deuflhard,et al.  Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell's Equations , 1997 .

[16]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[17]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[18]  W. Dahmen,et al.  Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .

[19]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[20]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[21]  Pierre Gilles Lemarié-Rieusset UN THEOREME D'INEXISTENCE POUR LES ONDELETTES VECTEURS A DIVERGENCE NULLE , 1994 .

[22]  Albert Cohen,et al.  Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..

[23]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[24]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[25]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[26]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .