Wide Band Low Noise Love Wave Magnetic Field Sensor System

We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/$$\sqrt{{\rm{Hz}}}$$Hz, a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

[1]  Jens Reermann,et al.  Multimode delta-E effect magnetic field sensors with adapted electrodes , 2016 .

[2]  M. Inoue,et al.  Optimum geometrical structure of highly magnetostrictive multilayer films for horizontally polarized high frequency magneto‐surface‐acoustic‐wave propagation , 1993 .

[3]  L. Kienle,et al.  Exchange biasing of magnetoelectric composites. , 2012, Nature materials.

[4]  J.J. Shea,et al.  Modern magnetic materials - principles and applications [Book Review] , 2005, IEEE Electrical Insulation Magazine.

[5]  Trémolet de Lacheisserie,et al.  Magnetostriction : theory and applications of magnetoelasticity , 1993 .

[6]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..

[7]  Jeffrey McCord,et al.  Progress in magnetic domain observation by advanced magneto-optical microscopy , 2015 .

[8]  B. Wagner,et al.  Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites , 2010 .

[9]  R. L. Jungerman,et al.  Delay Dependence of Phase Noise in SAW Filters , 1985, IEEE 1985 Ultrasonics Symposium.

[10]  Alex I. Braginski,et al.  Biomagnetism using SQUIDs: status and perspectives , 2006 .

[11]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[12]  Sebastian Zabel,et al.  Phase modulated magnetoelectric delta-E effect sensor for sub-nano tesla magnetic fields , 2015 .

[13]  Eckhard Quandt,et al.  Fully integrable magnetic field sensor based on delta-E effect , 2011 .

[14]  Alessio De Angelis,et al.  Magnetic Field Analysis for 3-D Positioning Applications , 2017, IEEE Transactions on Instrumentation and Measurement.

[15]  Shinsuke Nakayama,et al.  Biomagnetic field detection using very high sensitivity magnetoimpedance sensors for medical applications , 2009 .

[16]  D. G. Lord,et al.  The effect of annealing and crystallization on the magnetoelastic properties of Fe‐Si‐B amorphous wire , 1993 .

[17]  J. Lenz,et al.  Magnetic sensors and their applications , 2006, IEEE Sensors Journal.

[18]  E. Quandt,et al.  Optimization of the /spl Delta/E-effect in thin films and multilayers by magnetic field annealing , 2002 .

[19]  Supratik Datta,et al.  Anisotropy of constrained magnetostrictive materials , 2010 .

[20]  Bernhard Jakoby,et al.  Properties of Love waves: applications in sensors , 1997 .

[21]  Jens Reermann,et al.  Adaptive Readout Schemes for Thin-Film Magnetoelectric Sensors Based on the delta-E Effect , 2016, IEEE Sensors Journal.

[22]  E. C. Herleikson,et al.  Phase Noise in SAW Filters , 1984 .

[23]  F. Bai,et al.  Theoretical investigation of magnetoelectric surface acoustic wave characteristics of ZnO/Metglas layered composite , 2016 .

[24]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[25]  Nian X. Sun,et al.  Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films , 2007 .

[26]  Craig A. Grimes,et al.  Magnetic field tuning of the frequency–temperature response of a magnetoelastic sensor , 2002 .

[27]  O. Bou Matar,et al.  Multilayer magnetostrictive structure based surface acoustic wave devices , 2014 .

[28]  Yan Su,et al.  Achieving Lower Insertion Loss and Higher Sensitivity in a SAW Biosensor via Optimization of Waveguide and Microcavity Structures , 2017, IEEE Sensors Journal.

[29]  ADDITIVE ( RESIDUAL ) PHASE NOISE MEASUREMENT OF AMPLIFIERS , FREQUENCY DIVIDERS AND FREQUENCY MULTIPLIERS , 2022 .

[30]  J. Bronlund,et al.  Surface Acoustic Wave Delay Line for Biosensor Application , 2008, 2008 15th International Conference on Mechatronics and Machine Vision in Practice.

[31]  Robert Jahns,et al.  Magnetoelectric sensors for biomagnetic measurements , 2011, 2011 IEEE International Symposium on Medical Measurements and Applications.

[32]  John J. Podesta,et al.  Phase Noise Cancellation in a Mixer Circuit: Analysis Using a Random Phase Function. , 1996 .

[33]  B. Dufay,et al.  Development of a High Sensitivity Giant Magneto-Impedance Magnetometer: Comparison With a Commercial Flux-Gate , 2013, IEEE Transactions on Magnetics.

[34]  M. Rinaldi,et al.  Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection , 2013, Scientific Reports.

[35]  Annalisa Buffa,et al.  Isogeometric FEM Implementation of High-Order Surface Impedance Boundary Conditions , 2014, IEEE Transactions on Magnetics.

[36]  Sami Hage-Ali,et al.  Magnetic field SAW sensors based on magnetostrictive-piezoelectric layered structures: FEM modeling and experimental validation , 2016 .

[37]  R. Baer,et al.  STW chemical sensors , 1992, IEEE 1992 Ultrasonics Symposium Proceedings.

[38]  Anatoli L. Levshin,et al.  Seismic surface waves in a laterally inhomogeneous earth , 1989 .

[39]  H. Backe,et al.  Status and perspectives , 2007 .

[40]  K. Mackay,et al.  Elastic properties of magnetostrictive thin films using bending and torsion resonances of a bimorph , 2000 .

[41]  P. Ripka Electric current sensors: a review , 2010 .

[42]  Manuel Vazquez,et al.  A Low-Noise Fundamental-Mode Orthogonal Fluxgate Magnetometer , 2014, IEEE Transactions on Magnetics.

[43]  A. K. Ganguly,et al.  Applications of amorphous magnetic-layers in surface-acoustic-wave devices , 1979 .

[44]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[45]  J. Livingston,et al.  Magnetomechanical Properties of Amorphous Metals , 1982, April 16.

[46]  R. Wakai,et al.  A compact, high performance atomic magnetometer for biomedical applications , 2013, Physics in medicine and biology.

[47]  Robert C. O'Handley,et al.  Modern magnetic materials , 2000 .

[48]  O. Bou Matar,et al.  Band gap tunability of magneto-elastic phononic crystal , 2012 .

[49]  R. Baer,et al.  Phase noise in surface-acoustic-wave filters and resonators , 1988, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.