Decidability of string graphs

We show that string graphs can be recognized in nondeterministic exponential time by giving an exponential upper bound on the number of intersections for a drawing realizing the string graph in the plane. This upper bound confirms a conjecture by Kratochv\'{\i}l and Matou\v{s}ek~\cite{KM91} and settles the long-standing open problem of the decidability of string graph recognition (Sinden~\cite{S66}, Graham~\cite{G76}). Finally we show how to apply the result to solve another old open problem: deciding the existence of Euler diagrams, a central problem of topological inference (Grigni, Papadias, Papadimitriou~\cite{GPP95}).

[1]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[2]  F. Sinden Topology of thin film RC circuits , 1966 .

[3]  Robert E. Tarjan,et al.  Intersection graphs of curves in the plane , 1976, J. Comb. Theory, Ser. B.

[4]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[5]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[6]  J. Matousek,et al.  On polynomial time decidability of induced-minor-closed classes , 1988 .

[7]  P. Odifreddi Classical recursion theory , 1989 .

[8]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[9]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[10]  Max J. Egenhofer,et al.  Reasoning about Binary Topological Relations , 1991, SSD.

[11]  Jan Kratochvíl,et al.  String graphs requiring exponential representations , 1991, J. Comb. Theory, Ser. B.

[12]  Jan Kratochvíl,et al.  String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.

[13]  Jan Kratochvíl,et al.  String graphs. I. The number of critical nonstring graphs is infinite , 1991, J. Comb. Theory, Ser. B.

[14]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[15]  J. Rodriguez,et al.  Problem (1) , 1994 .

[16]  C. Tricot Curves and Fractal Dimension , 1994 .

[17]  Dimitris Papadias,et al.  Topological Inference , 1995, IJCAI.

[18]  Oliver Lemon,et al.  Spatial logic and the complexity of diagrammatic reasoning , 1997 .

[19]  Zhi-Zhong Chen,et al.  Planar map graphs , 1998, STOC '98.

[20]  Mikkel Thorup Map graphs in polynomial time , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[21]  Jan Kratochvíl,et al.  Crossing Number of Abstract Topological Graphs , 1998, GD.

[22]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[23]  Victor Vianu,et al.  Topological Queries in Spatial Databases , 1999, CSL.

[24]  János Pach,et al.  Which Crossing Number Is It Anyway? , 1998, J. Comb. Theory, Ser. B.

[25]  Martin Grohe,et al.  Computing crossing numbers in quadratic time , 2000, STOC '01.

[26]  János Pach,et al.  Recognizing String Graphs Is Decidable , 2001, Graph Drawing.

[27]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[28]  Ross M. McConnell,et al.  Linear-Time Recognition of Circular-Arc Graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[29]  Marcus Schaefer,et al.  Recognizing string graphs in NP , 2002, STOC '02.

[30]  John Howse,et al.  Generating Euler Diagrams , 2002, Diagrams.