Short-read reading-frame predictors are not created equal: sequence error causes loss of signal

BackgroundGene prediction algorithms (or gene callers) are an essential tool for analyzing shotgun nucleic acid sequence data. Gene prediction is a ubiquitous step in sequence analysis pipelines; it reduces the volume of data by identifying the most likely reading frame for a fragment, permitting the out-of-frame translations to be ignored. In this study we evaluate five widely used ab initio gene-calling algorithms—FragGeneScan, MetaGeneAnnotator, MetaGeneMark, Orphelia, and Prodigal—for accuracy on short (75–1000 bp) fragments containing sequence error from previously published artificial data and “real” metagenomic datasets.ResultsWhile gene prediction tools have similar accuracies predicting genes on error-free fragments, in the presence of sequencing errors considerable differences between tools become evident. For error-containing short reads, FragGeneScan finds more prokaryotic coding regions than does MetaGeneAnnotator, MetaGeneMark, Orphelia, or Prodigal. This improved detection of genes in error-containing fragments, however, comes at the cost of much lower (50%) specificity and overprediction of genes in noncoding regions.ConclusionsAb initio gene callers offer a significant reduction in the computational burden of annotating individual nucleic acid reads and are used in many metagenomic annotation systems. For predicting reading frames on raw reads, we find the hidden Markov model approach in FragGeneScan is more sensitive than other gene prediction tools, while Prodigal, MGA, and MGM are better suited for higher-quality sequences such as assembled contigs.

[1]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[2]  Tatiana A. Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[3]  T. Itoh,et al.  MetaGeneAnnotator: Detecting Species-Specific Patterns of Ribosomal Binding Site for Precise Gene Prediction in Anonymous Prokaryotic and Phage Genomes , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[4]  Susan M. Huse,et al.  Accuracy and quality of massively parallel DNA pyrosequencing , 2007, Genome Biology.

[5]  Limin Fu,et al.  Artificial and natural duplicates in pyrosequencing reads of metagenomic data , 2010, BMC Bioinformatics.

[6]  Haixu Tang,et al.  RAPSearch: a fast protein similarity search tool for short reads , 2011, BMC Bioinformatics.

[7]  V. Prabhu Symmetry observations in long nucleotide sequences. , 1993, Nucleic acids research.

[8]  James P. Egan,et al.  Source and Receiver Behavior in the Use of a Criterion , 1956 .

[9]  Sallie W. Chisholm,et al.  Unlocking Short Read Sequencing for Metagenomics , 2010, PloS one.

[10]  Katharina J Hoff,et al.  The effect of sequencing errors on metagenomic gene prediction , 2009, BMC Genomics.

[11]  Gail L. Rosen,et al.  Combining gene prediction methods to improve metagenomic gene annotation , 2011, BMC Bioinformatics.

[12]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[13]  Peer Bork,et al.  SmashCommunity: a metagenomic annotation and analysis tool , 2010, Bioinform..

[14]  Daniel H. Huson,et al.  48. MetaSim: A Sequencing Simulator for Genomics and Metagenomics , 2011 .

[15]  T. Takagi,et al.  MetaGene: prokaryotic gene finding from environmental genome shotgun sequences , 2006, Nucleic acids research.

[16]  Katharina J. Hoff,et al.  Gene prediction in metagenomic fragments: A large scale machine learning approach , 2008, BMC Bioinformatics.

[17]  Daniel H. Huson,et al.  MetaSim—A Sequencing Simulator for Genomics and Metagenomics , 2008, PloS one.

[18]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[19]  James P. Egan,et al.  Operating Characteristics Determined by Binary Decisions and by Ratings , 1959 .

[20]  A. Salamov,et al.  Use of simulated data sets to evaluate the fidelity of metagenomic processing methods , 2007, Nature Methods.

[21]  James H. Bullard,et al.  The origin of the Haitian cholera outbreak strain. , 2011, The New England journal of medicine.

[22]  J. Venter,et al.  Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic , 2012, The ISME Journal.

[23]  S. Kravitz,et al.  The JCVI standard operating procedure for annotating prokaryotic metagenomic shotgun sequencing data , 2010, Standards in genomic sciences.

[24]  Sean D. Hooper,et al.  Annotation of metagenome short reads using proxygenes , 2008, ECCB.

[25]  Jason H. Moore,et al.  Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life , 2012, Briefings Bioinform..

[26]  Emese Meglécz,et al.  Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing , 2011, BMC Genomics.

[27]  S. Kravitz,et al.  CAMERA: A Community Resource for Metagenomics , 2007, PLoS biology.

[28]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[29]  K. Konstantinidis,et al.  Trends between gene content and genome size in prokaryotic species with larger genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[31]  S. Tringe,et al.  Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen , 2011, Science.

[32]  M. Borodovsky,et al.  Heuristic approach to deriving models for gene finding. , 1999, Nucleic acids research.

[33]  D. Forsdyke,et al.  Relative roles of primary sequence and (G + C)% in determining the hierarchy of frequencies of complementary trinucleotide pairs in DNAs of different species , 1995, Journal of Molecular Evolution.

[34]  Héctor Corrada Bravo,et al.  Model-based quality assessment and base-calling for second-generation sequencing data. , 2010, Biometrics.

[35]  Haixu Tang,et al.  FragGeneScan: predicting genes in short and error-prone reads , 2010, Nucleic acids research.

[36]  Mark Borodovsky,et al.  Genetack: frameshift Identification in protein-Coding Sequences by the Viterbi Algorithm , 2010, J. Bioinform. Comput. Biol..

[37]  David R. Riley,et al.  CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing , 2011, BMC Bioinformatics.

[38]  I-Min A. Chen,et al.  IMG/M: a data management and analysis system for metagenomes , 2007, Nucleic Acids Res..

[39]  Jaysheel D. Bhavsar,et al.  Metagenomics: Read Length Matters , 2008, Applied and Environmental Microbiology.

[40]  S. Salzberg,et al.  Microbial gene identification using interpolated Markov models. , 1998, Nucleic acids research.

[41]  I-Min A. Chen,et al.  IMG/M: the integrated metagenome data management and comparative analysis system , 2011, Nucleic Acids Res..

[42]  Katharina J. Hoff,et al.  Orphelia: predicting genes in metagenomic sequencing reads , 2009, Nucleic Acids Res..

[43]  Steven Salzberg,et al.  Identifying bacterial genes and endosymbiont DNA with Glimmer , 2007, Bioinform..

[44]  John D McPherson,et al.  Next-generation gap , 2009, Nature Methods.

[45]  Andreas Wilke,et al.  The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools , 2012, BMC Bioinformatics.

[46]  M. Borodovsky,et al.  Ab initio gene identification in metagenomic sequences , 2010, Nucleic acids research.

[47]  Fabian Schreiber,et al.  CoMet—a web server for comparative functional profiling of metagenomes , 2011, Nucleic Acids Res..

[48]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[49]  Andreas Wilke,et al.  A Platform-Independent Method for Detecting Errors in Metagenomic Sequencing Data: DRISEE , 2012, PLoS Comput. Biol..

[50]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..