Global fuel moisture content mapping from MODIS

Abstract Fuel moisture content (FMC) of live vegetation is a crucial wildfire risk and spread rate driver. This study presents the first daily FMC product at a global scale and 500 m pixel resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) and radiative transfer models (RTMs) inversion techniques. Firstly, multi-source information parameterized the PROSPECT-5 (leaf level), 4SAIL (grass and shrub canopy level) and GeoSail (tree canopy level) RTMs to generate three look-up tables (LUTs). Each LUT contained the most realistic model inputs range and combination, and the corresponding simulated spectra. Secondly, for each date and location of interest, a global landcover map classified fuels into three classes: grassland, shrubland and forest. For each fuel class, the best LUT-based inversion strategy based on spectral information, cost function, percentage of solutions, and central tendency determined the optimal model for the global FMC product. Finally, 3,034 FMC measurements from 120 worldwide sites validated the statistically significant results (R2 = 0.62, RMSE = 34.57%, p

[1]  Xing Li,et al.  A Bayesian Network-Based Method to Alleviate the Ill-Posed Inverse Problem: A Case Study on Leaf Area Index and Canopy Water Content Retrieval , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[2]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[3]  Luis Alonso,et al.  Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[4]  W. Matt Jolly,et al.  Sensitivity of a surface fire spread model and associated fire behaviour fuel models to changes in live fuel moisture , 2007 .

[5]  R. Houborg,et al.  Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data , 2007 .

[6]  N. Goel,et al.  Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .

[7]  Andrew K. Skidmore,et al.  Retrieving vegetation canopy water content from hyperspectral thermal measurements. , 2017 .

[8]  Emilio Chuvieco,et al.  Regional estimation of woodland moisture content by inverting Radiative Transfer Models , 2013 .

[9]  Ahmad Al Bitar,et al.  Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. , 2018 .

[10]  B. He,et al.  Effects of Live Fuel Moisture Content on Wildfire Occurrence in Fire-Prone Regions over Southwest China , 2019, Forests.

[11]  Stuart Matthews,et al.  Effect of drying temperature on fuel moisture content measurements , 2010 .

[12]  D. Roberts,et al.  Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California , 2006 .

[13]  P. Bicheron A Method of Biophysical Parameter Retrieval at Global Scale by Inversion of a Vegetation Reflectance Model , 1999 .

[14]  David J. Ganz,et al.  Climate change and disruptions to global fire activity , 2012 .

[15]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[16]  Emilio Chuvieco,et al.  Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: Solving the ill-posed inverse problem , 2009 .

[17]  S. Ustin,et al.  Estimating Vegetation Water content with Hyperspectral data for different Canopy scenarios: Relationships between AVIRIS and MODIS Indexes , 2006 .

[18]  E. Kasischke,et al.  Fire Danger Monitoring Using ERS-1 SAR Images in the Case of Northern Boreal Forests , 2002 .

[19]  Bunkei Matsushita,et al.  Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest , 2007, Sensors.

[20]  Matthias M. Boer,et al.  Large‐scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia , 2016 .

[21]  Xing Li,et al.  A radiative transfer model-based method for the estimation of grassland aboveground biomass , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[22]  John R. Miller,et al.  Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .

[23]  Xing Li,et al.  Retrieval of forest fuel moisture content using a coupled radiative transfer model , 2017, Environ. Model. Softw..

[24]  A. Kuusk The Hot Spot Effect in Plant Canopy Reflectance , 1991 .

[25]  S. Tarantola,et al.  Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications , 2002 .

[26]  E. Gorsel,et al.  A simple and effective method to collect leaves and seeds from tall trees , 2016 .

[27]  S. Liang,et al.  Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model , 2003 .

[28]  Laurie A. Chisholm,et al.  Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data , 2012 .

[29]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[30]  R. Colombo,et al.  Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations , 2004 .

[31]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[32]  D. Riaño,et al.  Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment , 2002 .

[33]  M. Nunez,et al.  Assessing Grassland Moisture and Biomass in Tasmania - the Application of Remote-Sensing and Empirical-Models for a Cloudy Environment , 1995 .

[34]  I. Jonckheere,et al.  Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems , 2007 .

[35]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[36]  A. P. Williams,et al.  SAR-enhanced mapping of live fuel moisture content , 2020 .

[37]  Jan G. P. W. Clevers,et al.  Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison , 2015 .

[38]  David Riaño,et al.  A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing , 2018, Remote Sensing of Environment.

[39]  Binbin He,et al.  Application of Landsat ETM+ and OLI Data for Foliage Fuel Load Monitoring Using Radiative Transfer Model and Machine Learning Method , 2021, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  Emilio Chuvieco,et al.  Combining AVHRR and meteorological data for estimating live fuel moisture content , 2008 .

[41]  Jeremy S Littell,et al.  A review of the relationships between drought and forest fire in the United States , 2016, Global change biology.

[42]  D. Riaño,et al.  Estimation of live fuel moisture content from MODIS images for fire risk assessment , 2008 .

[43]  D. Bowman,et al.  Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires , 2020, Nature Sustainability.

[44]  Craig S. T. Daughtry,et al.  Remote sensing of fuel moisture content from ratios of narrow-band vegetation water and dry-matter indices , 2013 .

[45]  D. Riaño,et al.  Design of an empirical index to estimate fuel moisture content from NOAA-AVHRR images in forest fire danger studies. , 2003 .

[46]  S. P. Abercrombie,et al.  Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product , 2019, Remote Sensing of Environment.

[47]  R. Panciera,et al.  Monitoring live fuel moisture in semiarid environments using L-band radar data , 2015 .

[48]  Emilio Chuvieco,et al.  Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models , 2009 .

[49]  F. M. Danson,et al.  A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving t , 2013 .

[50]  Peter R. J. North,et al.  Statistical Distances and Their Applications to Biophysical Parameter Estimation: Information Measures, M-Estimates, and Minimum Contrast Methods , 2013, Remote. Sens..

[51]  Pablo J. Zarco-Tejada,et al.  Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[52]  S. Ustin,et al.  Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA , 2008 .

[53]  S. Ustin,et al.  Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response , 2014 .

[54]  W. Verhoef Theory of radiative transfer models applied in optical remote sensing of vegetation canopies , 1998 .

[55]  David Riaño,et al.  Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis , 2014 .

[56]  Binbin He,et al.  Assessment of the Dual Polarimetric Sentinel-1A Data for Forest Fuel Moisture Content Estimation , 2019, Remote. Sens..

[57]  Emilio Chuvieco,et al.  Generation of a Species-Specific Look-Up Table for Fuel Moisture Content Assessment , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[58]  Xiaoxiong Xiong,et al.  MODIS and VIIRS Calibration History and Future Outlook , 2020, Remote. Sens..

[59]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[60]  K. Huemmrich The GeoSail model: a simple addition to the SAIL model to describe discontinuous canopy reflectance , 2001 .

[61]  Philip E. Dennison,et al.  Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains, California , 2008 .

[62]  D. Riaño,et al.  Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating , 2004 .

[63]  Binbin He,et al.  Modified enhanced vegetation index for reducing topographic effects , 2015 .

[64]  David R. Weise,et al.  Assessing Live Fuel Moisture For Fire Management Applications , 1998 .

[65]  Dar A. Roberts,et al.  Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index , 2003 .

[66]  P. Curran,et al.  LIBERTY—Modeling the Effects of Leaf Biochemical Concentration on Reflectance Spectra , 1998 .

[67]  Xing Li,et al.  Retrieval of Grassland Live Fuel Moisture Content by Parameterizing Radiative Transfer Model With Interval Estimated LAI , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[68]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[69]  F. Mark Danson,et al.  Mapping fuel moisture content in upland vegetation using airborne hyperspectral imagery , 2012 .

[70]  F. M. Danson,et al.  Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications , 2019, Scientific Data.

[71]  F. M. Danson,et al.  Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level , 2004 .

[72]  K. Barry,et al.  Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling , 2011 .

[73]  J. Dupuy,et al.  Why is the effect of live fuel moisture content on fire rate of spread underestimated in field experiments in shrublands? , 2018, International Journal of Wildland Fire.

[74]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[75]  Dar A. Roberts,et al.  Mapping live fuel moisture with MODIS data: A multiple regression approach , 2008 .

[76]  J. Barber,et al.  Monitoring grassland dryness and fire potential in australia with NOAA/AVHRR data , 1988 .

[77]  E. Chuvieco,et al.  Development of a framework for fire risk assessment using remote sensing and geographic information system technologies , 2010 .

[78]  Juan Pablo Argañaraz,et al.  Estimation of Live Fuel Moisture Content From MODIS Images for Fire Danger Assessment in Southern Gran Chaco , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[79]  John R. Miller,et al.  Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level , 2008 .

[80]  Mariano García,et al.  A Live Fuel Moisture Content Product from Landsat TM Satellite Time Series for Implementation in Fire Behavior Models , 2020, Remote. Sens..

[81]  Aaron C. Greenville,et al.  Impact of 2019–2020 mega-fires on Australian fauna habitat , 2020, Nature Ecology & Evolution.

[82]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[83]  Gustau Camps-Valls,et al.  A global canopy water content product from AVHRR/Metop , 2020, 2012.10397.

[84]  M. Landi,et al.  Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. , 2015, The Science of the total environment.

[85]  J. Qu,et al.  Retrieval of real-time live fuel moisture content using MODIS measurements , 2007 .