Quantum-Optical set-up for the Monty Hall problem

A quantization scheme for the Monty Hall problem is proposed inspired by an experimentally-feasible, quantum-optical set-up that resembles the classical game. The expected payoff of the player is studied from a frequentist perspective by analyzing the classical expectation values of the obtained quantum probabilities. Results are examined considering both entanglement and non-entanglement between player and host, and using two different approaches: random and strategy-based. A potential application to secure communications of this quantization scheme and its results is also briefly discussed.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  P. Hayden,et al.  Comment on "quantum games and quantum strategies". , 2000, Physical Review Letters.

[3]  J. Eisert,et al.  Reply: Eisert, Wilkens, and Lewenstein , 2001 .

[4]  D. Meyer Quantum strategies , 1998, quant-ph/9804010.

[5]  Sahin Kaya Ozdemir,et al.  Quantum advantage does not survive in the presence of a corrupt source: optimal strategies in simultaneous move games , 2004 .

[6]  Guang-Can Guo,et al.  Quantum strategies of quantum measurements , 2001 .

[7]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[8]  J. Eisert,et al.  Eisert, Wilkens, and Lewenstein Reply: , 2001 .

[9]  Simon C. Benjamin,et al.  Multiplayer quantum games , 2001 .

[10]  Lloyd Christopher L. Hollenberg,et al.  Multiplayer quantum Minority game with decoherence , 2005, SPIE International Symposium on Fluctuations and Noise.

[11]  D. Abbott,et al.  Quantum version of the Monty Hall problem , 2001, quant-ph/0109035.

[12]  S. J. van Enk,et al.  Classical rules in quantum games , 2002 .

[13]  P. Gawron NOISY QUANTUM MONTY HALL GAME , 2009, 0907.1381.

[14]  M. K. Khan,et al.  Quantum Monty Hall Problem under Decoherence , 2009, 0907.2293.

[15]  Giacomo Mauro D'Ariano,et al.  The quantum monty hall problem , 2002, Quantum Inf. Comput..

[16]  L. Goldenberg,et al.  Quantum Gambling , 1998, quant-ph/9808001.

[17]  Neil F. Johnson Playing a quantum game with a corrupted source , 2001 .

[18]  Del Rajan,et al.  Quantum PBR Theorem as a Monty Hall Game , 2019, Quantum Reports.

[19]  Dariusz Kurzyk,et al.  Quantum inferring acausal structures and the Monty Hall problem , 2016, Quantum Inf. Process..

[20]  Matthew F Pusey,et al.  On the reality of the quantum state , 2011, Nature Physics.

[21]  Leong Chuan Kwek,et al.  Quantum prisoner dilemma under decoherence , 2003 .

[22]  A. Plastino,et al.  Positive operator valued measures and the quantum Monty Hall problem. , 2006, Anais da Academia Brasileira de Ciencias.