Finitely generated submodels of an uncountably categorical homogeneous structure
暂无分享,去创建一个
[1] Alistair H. Lachlan,et al. aleph0-Categorical, aleph0-stable structures , 1985, Annals of Pure and Applied Logic.
[2] Saharon Shelah,et al. Main Gap for Locally Saturated Elementary Submodels of A Homogeneous Structure , 2001, J. Symb. Log..
[3] Tapani Hyttinen. Generalizing Morley's Theorem , 1998, Math. Log. Q..
[4] Tapani Hyttinen,et al. A rank for the class of elementary submodels of a superstable homogeneous model , 2002, Journal of Symbolic Logic.
[5] Olivier Lessmann,et al. Simple homogeneous models , 2001 .
[6] Saharon Shelah,et al. Finite diagrams stable in power , 1970 .
[7] Tapani Hyttinen,et al. On nonstructure of elementary submodels of a stable homogeneous structure , 1998 .
[8] Saharon Shelah,et al. Strong Splitting in Stable Homogeneous Models , 2000, Ann. Pure Appl. Log..
[9] Tapani Hyttinen. Finiteness of U-rank implies simplicity in homogeneous structures , 2003, Math. Log. Q..
[10] Olivier Lessmann. Ranks and pregeometries in finite diagrams , 2000, Ann. Pure Appl. Log..