A multi-path gated ring oscillator based time-to-digital converter in 65 nm CMOS technology

A gated ring oscillator (GRO) based time-to-digital converter (TDC) is presented. To enhance the resolution of the TDC, a multi-path structure for the GRO is used to achieve a higher oscillation frequency and an input stage is also presented to equivalently amplify the input time difference with a gain of 2. The GRO based TDC circuit is fabricated in TSMC 65 nm CMOS technology and the core area is about 0.02 mm2. According to the measurement results, the effective resolution of this circuit is better than 4.22 ps under a 50 MHz clock frequency. With a 1 ns input range, the maximum clock frequency of this circuit is larger than 200 MHz. Under a 1 V power supply, with a 200–800 ps input time difference, the measured power consumption is 1.24 to 1.72 mW at 50 MHz clock frequency and 1.73 to 2.20 mW at 200 MHz clock frequency.

[1]  Poki Chen,et al.  A CMOS pulse-shrinking delay element for time interval measurement , 2000 .

[2]  M.Z. Straayer,et al.  A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping , 2009, IEEE Journal of Solid-State Circuits.

[3]  P. Dudek,et al.  A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line , 2000, IEEE Journal of Solid-State Circuits.

[4]  Poras T. Balsara,et al.  1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[6]  Kwyro Lee,et al.  A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme , 1997, IEEE J. Solid State Circuits.

[7]  A.A. Abidi,et al.  A 9 b, 1.25 ps Resolution Coarse–Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue , 2008, IEEE Journal of Solid-State Circuits.

[8]  I. Nissinen,et al.  A CMOS time-to-digital converter based on a ring oscillator for a laser radar , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).