Bounding the costs of quantum simulation of many-body physics in real space

We present a quantum algorithm for simulating the dynamics of a first-quantized Hamiltonian in real space based on the truncated Taylor series algorithm. We avoid the possibility of singularities by applying various cutoffs to the system and using a high-order finite difference approximation to the kinetic energy operator. We find that our algorithm can simulate $\eta$ interacting particles using a number of calculations of the pairwise interactions that scales, for a fixed spatial grid spacing, as $\tilde{O}(\eta^2)$, versus the $\tilde{O}(\eta^5)$ time required by previous methods (assuming the number of orbitals is proportional to $\eta$), and scales super-polynomially better with the error tolerance than algorithms based on the Lie-Trotter-Suzuki product formula. Finally, we analyze discretization errors that arise from the spatial grid and show that under some circumstances these errors can remove the exponential speedups typically afforded by quantum simulation.

[1]  Christof Zalka Simulating quantum systems on a quantum computer , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Alán Aspuru-Guzik,et al.  Exploiting Locality in Quantum Computation for Quantum Chemistry. , 2014, The journal of physical chemistry letters.

[3]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[4]  Andrew M. Childs,et al.  Simulating Sparse Hamiltonians with Star Decompositions , 2010, TQC.

[5]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[6]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.

[7]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[8]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[9]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[10]  Michel X. Goemans,et al.  Proceedings of the thirty-fifth annual ACM symposium on Theory of computing , 2003, STOC 2003.

[11]  F. Verstraete,et al.  Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.

[12]  E. Solano,et al.  Digital Quantum Simulation of Spin Systems in Superconducting Circuits , 2013, 1311.7626.

[13]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[14]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[15]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[16]  Jianping Li General explicit difference formulas for numerical differentiation , 2005 .

[17]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[18]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[19]  Haobin Wang,et al.  Calculating the thermal rate constant with exponential speedup on a quantum computer , 1998, quant-ph/9807009.

[20]  I. Kassal,et al.  Preparation of many-body states for quantum simulation. , 2008, The Journal of chemical physics.

[21]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[22]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[23]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[24]  Rolando D. Somma,et al.  Quantum algorithms for Gibbs sampling and hitting-time estimation , 2016, Quantum Inf. Comput..

[25]  Theory of Quantum Computation, Communication, and Cryptography , 2010, Lecture Notes in Computer Science.

[26]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[27]  C. Surko,et al.  Positron binding to alcohol molecules , 2012 .

[28]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[29]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[30]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[31]  Christof Zalka Efficient Simulation of Quantum Systems by Quantum Computers , 1996, quant-ph/9603026.

[32]  B. Boghosian,et al.  Simulating quantum mechanics on a quantum computer , 1997, quant-ph/9701019.

[33]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[34]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[35]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[36]  Barry C. Sanders,et al.  Communications in Mathematical Physics Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2007 .

[37]  R. Somma A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation , 2015, 1512.03416.

[38]  R. Feynman Simulating physics with computers , 1999 .

[39]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[40]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .