Parameterized complexity of vertex deletion into perfect graph classes

Vertex deletion problems are at the heart of parameterized complexity. For a graph class F, the F-Deletion problem takes as input a graph G and an integer k. The question is whether it is possible to delete at most k vertices from G such that the resulting graph belongs to F. Whether Perfect Deletion is fixed-parameter tractable, and whether Chordal Deletion admits a polynomial kernel, when parameterized by k, have been stated as open questions in previous work. We show that Perfect Deletion (k) and Weakly Chordal Deletion (k) are W[2]-hard. In search of positive results, we study restricted variants such that the deleted vertices must be taken from a specified set X, which we parameterize by |X|. We show that for Perfect Deletion and Weakly Chordal Deletion, although this restriction immediately ensures fixed parameter tractability, it is not enough to yield polynomial kernels, unless NP ⊆ coNP/poly. On the positive side, for Chordal Deletion, the restriction enables us to obtain a kernel with O(|X|4) vertices.

[1]  Rolf Niedermeier,et al.  Iterative Compression for Exactly Solving NP-Hard Minimization Problems , 2009, Algorithmics of Large and Complex Networks.

[2]  Dániel Marx,et al.  Obtaining a Planar Graph by Vertex Deletion , 2007, Algorithmica.

[3]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[4]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[5]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[6]  Daniel Lokshtanov,et al.  Wheel-Free Deletion Is W[2]-Hard , 2008, IWPEC.

[7]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[8]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[9]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[10]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[11]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[12]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[13]  Faisal N. Abu-Khzam,et al.  A kernelization algorithm for d-Hitting Set , 2010, J. Comput. Syst. Sci..

[14]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[15]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[16]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[17]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[18]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[19]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..

[20]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[21]  Hannes Moser,et al.  A Problem Kernelization for Graph Packing , 2009, SOFSEM.

[22]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Stefan Kratsch,et al.  Isomorphism for Graphs of Bounded Feedback Vertex Set Number , 2010, SWAT.

[25]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[26]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[27]  Stephan Kreutzer,et al.  Computing excluded minors , 2008, SODA '08.

[28]  Hans L. Bodlaender,et al.  A Cubic Kernel for Feedback Vertex Set and Loop Cutset , 2010, Theory of Computing Systems.

[29]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[30]  Michael R. Fellows,et al.  On Problems without Polynomial Kernels (Extended Abstract) , 2008, ICALP.