Stability and Optimal Control of Switching PDE-Dynamical Systems

Selected results for the stability and optimal control of abstract switched systems in Banach and Hilbert space are reviewed. The dynamics are typically given in a piecewise sense by a family of nonlinearly perturbed evolutions of strongly continuous semigroups. Stability refers to characterizations of asymptotic decay of solutions that holds uniformly for certain classes of switching signals for time going to infinity. Optimal control refers to the minimization of costs associated to solutions by appropriately selecting switching signals. Selected numerical results verify and visualize some of the available theory.

[1]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[2]  R. A. Smith ASYMPTOTIC STABILITY OF x ″+ a ( t ) x ′+ x =0 , 1961 .

[3]  R. Datko An extension of a theorem of A. M. Lyapunov to semi-groups of operators , 1968 .

[4]  A. Pazy On the Applicability of Lyapunov’s Theorem in Hilbert Space , 1972 .

[5]  M. Ciletti,et al.  The computation and theory of optimal control , 1972 .

[6]  M. Slemrod A Note on Complete Controllability and Stabilizability for Linear Control Systems in Hilbert Space , 1974 .

[7]  Zinger,et al.  ON AN EXTENSION OF A THEOREM , 1975 .

[8]  A. Balakrishnan Applied Functional Analysis , 1976 .

[9]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .

[10]  L. Silverman,et al.  Constructive Stability and Asymptotic Stability of Dynamical Systems , 1980 .

[11]  Tatsien Li,et al.  Boundary value problems for quasilinear hyperbolic systems , 1985 .

[12]  M. Oberguggenberger Propagation of singularities for semilinear hyperbolic initial-boundary value problems in one space dimension , 1986 .

[13]  Brian D. O. Anderson,et al.  Stability of adaptive systems: passivity and averaging analysis , 1986 .

[14]  T. Seidman The coefficient map for certain exponential sums , 1986 .

[15]  A. C. Williams,et al.  Marginal values in mixed integer linear programming , 1989, Math. Program..

[16]  Y. Pyatnitskiy,et al.  Criteria of asymptotic stability of differential and difference inclusions encountered in control theory , 1989 .

[17]  A. Haraux Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps , 1989 .

[18]  H. Frankowska,et al.  A priori estimates for operational differential inclusions , 1990 .

[19]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .

[20]  Franco Blanchini,et al.  Nonquadratic Lyapunov functions for robust control , 1995, Autom..

[21]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[22]  L. Hatvani Integral conditions on the asymptotic stability for the damped linear oscillator with small damping , 1996 .

[23]  F. Blanchini,et al.  A new class of universal Lyapunov functions for the control of uncertain linear systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[24]  J. Serrin,et al.  Asymptotic stability for nonautonomous dissipative wave systems , 1996 .

[25]  M. Nakao Decay of solutions of the wave equation with a local degenerate dissipation , 1996 .

[26]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[27]  T. Seidman,et al.  An Abstract Bang-Bang Principle and Time-Optimal Boundary Control of the Heat Equation , 1997 .

[28]  D. Aeyels,et al.  A new asymptotic stability criterion for nonlinear time-variant differential equations , 1998, IEEE Trans. Autom. Control..

[29]  G. Pianigiani,et al.  Evolution inclusions in non separable Banach spaces , 1999 .

[30]  Clyde F. Martin,et al.  A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching , 1999, IEEE Transactions on Automatic Control.

[31]  P. Martinez Decay of solutions of the wave equation with a local highly degenerate dissipation , 1999 .

[32]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[33]  A Glimm type functional for a special Jin-Xin relaxation model , 2001 .

[34]  P. Martinez,et al.  STABILIZATION OF THE WAVE EQUATION BY ON-OFF AND POSITIVE-NEGATIVE FEEDBACKS , 2002 .

[35]  Marius Tucsnak,et al.  Energy decay estimates for the damped plate equation with a local degenerated dissipation , 2003, Syst. Control. Lett..

[36]  A. Hegyi,et al.  Optimal Coordination of Variable Speed Limits to Suppress Shock Waves , 2002, IEEE Transactions on Intelligent Transportation Systems.

[37]  Georges Bastin,et al.  A Strict Lyapunov Function for Boundary Control of Hyperbolic Systems of Conservation Laws , 2007, IEEE Transactions on Automatic Control.

[38]  Gengsheng Wang,et al.  The existence of time optimal control of semilinear parabolic equations , 2004, Syst. Control. Lett..

[39]  Patrick Martinez,et al.  Asymptotic Stability for Intermittently Controlled Second-Order Evolution Equations , 2005, SIAM J. Control. Optim..

[40]  L. Shampine Solving Hyperbolic PDEs in MATLAB , 2005 .

[41]  E. Verriest Optimal Control for Switched Distributed Delay Systems with Refractory Period , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[42]  Yacine Chitour,et al.  Common Polynomial Lyapunov Functions for Linear Switched Systems , 2006, SIAM J. Control. Optim..

[43]  Sebastian Sager,et al.  Numerical methods for mixed-integer optimal control problems , 2006 .

[44]  Kok Lay Teo,et al.  Optimal control of switched systems with time delay , 2006, Appl. Math. Lett..

[45]  Magnus Egerstedt,et al.  Transition-time optimization for switched-mode dynamical systems , 2006, IEEE Transactions on Automatic Control.

[46]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[47]  Alain Bensoussan,et al.  Representation and Control of Infinite Dimensional Systems, 2nd Edition , 2007, Systems and control.

[48]  G. Tenenbaum,et al.  New blow-up rates for fast controls of Schrödinger and heat equations , 2007 .

[49]  Antonio Loría,et al.  Uniform stabilization for linear systems with persistency of excitation: the neutrally stable and the double integrator cases , 2007, Math. Control. Signals Syst..

[50]  Erik I. Verriest,et al.  Gradient Descent Approach to Optimal Mode Scheduling in Hybrid Dynamical Systems , 2008 .

[51]  Dimitri Mugnai,et al.  Stability of Solutions for Some Classes of Nonlinear Damped Wave Equations , 2008, SIAM J. Control. Optim..

[52]  Alexandre M. Bayen,et al.  Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions , 2008, 2008 47th IEEE Conference on Decision and Control.

[53]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[54]  S. Sager Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control , 2009 .

[55]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[56]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[57]  Orest V. Iftime,et al.  Optimal control of switched distributed parameter systems with spatially scheduled actuators , 2009, Autom..

[58]  Mario Sigalotti,et al.  Existence of common Lyapunov functions for infinite-dimensional switched linear systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[59]  Mario Sigalotti,et al.  Converse Lyapunov Theorems for Switched Systems in Banach and Hilbert Spaces , 2010, SIAM J. Control. Optim..

[60]  Christian Kirches,et al.  Combinatorial integral approximation , 2011, Math. Methods Oper. Res..

[61]  Mario Sigalotti,et al.  On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping , 2011, ArXiv.

[62]  Michael Herty,et al.  Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws , 2012, Comput. Optim. Appl..

[63]  Alexandre M. Bayen,et al.  Exponential Stability of Switched Linear Hyperbolic Initial-Boundary Value Problems , 2011, IEEE Transactions on Automatic Control.

[64]  Moritz Diehl,et al.  The integer approximation error in mixed-integer optimal control , 2012, Math. Program..

[65]  Sebastian Sager,et al.  Relaxation methods for mixed-integer optimal control of partial differential equations , 2012, Computational Optimization and Applications.

[66]  Falk M. Hante Relaxation methods for hyperbolic PDE mixed‐integer optimal control problems , 2015, 1509.04052.

[67]  Falk M. Hante On the relaxation gap for PDE mixed-integer optimal control problems: On the relaxation gap for PDE mixed-integer optimal control problems , 2016 .

[68]  Falk M. Hante,et al.  Optimal Switching for Hybrid Semilinear Evolutions , 2016, 1605.05153.

[69]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[70]  Thorsten Koch,et al.  GasLib - A Library of Gas Network Instances , 2017, Data.

[71]  Alexander Martin,et al.  Challenges in Optimal Control Problems for Gas and Fluid Flow in Networks of Pipes and Canals: From Modeling to Industrial Applications , 2017 .

[72]  Martin Gugat,et al.  Lipschitz continuity of the value function in mixed-integer optimal control problems , 2016, Math. Control. Signals Syst..

[73]  L. Tébou ON THE DECAY ESTIMATES FOR THE WAVE EQUATION WITH A LOCAL DEGENERATE OR NONDEGENERATE DISSIPATION , 2022 .