Exceptional points in parity-time symmetric plasmonic Huygens’ metasurfaces

Parity-time (PT) symmetric optical structures exhibit several unique and interesting characteristics, with the most popular being exceptional points. While the emerging concept of PT-symmetry has been extensively investigated in bulky photonic designs, its exotic functionalities in nanophotonic non-Hermitian plasmonic systems still remain relatively unexplored. Towards this goal, in this work we analyze the unusual properties of a plasmonic Huygens’ metasurface composed of an array of active metal-dielectric core-shell nanoparticles. By calculating the reflection and transmission coefficients of the metasurface under various levels of gain, we demonstrate the existence of reflectionless transmission when an exceptional point is formed. The proposed new active metasurface design has subwavelength thickness and can be used to realize ultracompact perfect transmission optical filters.

[1]  K. Cheah,et al.  Double exceptional points in grating coupled metal-insulator-metal heterostructure. , 2022, Optics express.

[2]  C. Argyropoulos,et al.  Tunable directional filter for mid-infrared optical transmission switching. , 2022, Optics express.

[3]  X. Su,et al.  Encircling exceptional points in non-Hermitian systems with quasidegenerate energy levels , 2022, Physical Review A.

[4]  X. Xia,et al.  A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021 , 2022, Renewable and Sustainable Energy Reviews.

[5]  Q. Gong,et al.  Exceptional points and enhanced nanoscale sensing with a plasmon-exciton hybrid system , 2021, Photonics Research.

[6]  G. Lu,et al.  Riemann-Encircling Exceptional Points for Efficient Asymmetric Polarization-Locked Devices. , 2021, Physical review letters.

[7]  P. Genevet,et al.  Plasmonic topological metasurface by encircling an exceptional point , 2021, Science.

[8]  G. Naik,et al.  Non-Hermitian metasurfaces for the best of plasmonics and dielectrics , 2021, Optical Materials Express.

[9]  M. Kats,et al.  Switchable Induced-Transmission Filters Enabled by Vanadium Dioxide. , 2021, Nano letters.

[10]  A. F. Koenderink,et al.  Pseudochirality at exceptional rings of optical metasurfaces , 2021 .

[11]  Guanxia Yu,et al.  Unidirectional transmission in one dimensional photonic crystal composed of PT symmetric and magneto-optical materials , 2021 .

[12]  S. Bell,et al.  Self-assembly of colloidal nanoparticles into 2D arrays at water-oil interfaces: rational construction of stable SERS substrates with accessible enhancing surfaces and tailored plasmonic response. , 2021, Nanoscale.

[13]  F. Bilotti,et al.  Design of High-Q Passband Filters Implemented Through Multipolar All-Dielectric Metasurfaces , 2020, IEEE Transactions on Antennas and Propagation.

[14]  P. Cheben,et al.  Narrowband Bragg filters based on subwavelength grating waveguides for silicon photonic sensing. , 2020, Optics express.

[15]  S. Reich,et al.  Structural order in plasmonic superlattices , 2020, Nature Communications.

[16]  Boubacar Kante,et al.  Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing , 2020 .

[17]  Andrea Alù,et al.  Surface Impedance Modeling of All-Dielectric Metasurfaces , 2020, IEEE Transactions on Antennas and Propagation.

[18]  C. J. Moore,et al.  Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications , 2020, Cancer Nanotechnology.

[19]  Teun-Teun Kim,et al.  Observation of an exceptional point in a non-Hermitian metasurface , 2019, Nanophotonics.

[20]  Y. Lu,et al.  Unidirectional reflectionless transmission for two-dimensional PT -symmetric periodic structures , 2019, Physical Review A.

[21]  Jiupeng Zhao,et al.  Near-Perfect Selective Photonic Crystal Emitter with Nanoscale Layers for Daytime Radiative Cooling , 2019, ACS Applied Nano Materials.

[22]  C. Argyropoulos,et al.  Nonreciprocal Transmission in Nonlinear PT‐Symmetric Metamaterials Using Epsilon‐Near‐Zero Media Doped with Defects , 2019, Advanced Optical Materials.

[23]  F. Nori,et al.  Parity–time symmetry and exceptional points in photonics , 2019, Nature Materials.

[24]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[25]  C. Argyropoulos,et al.  Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides , 2018, Physical Review B.

[26]  A. Roberts,et al.  Direct Assembly of Large Area Nanoparticle Arrays. , 2018, ACS nano.

[27]  George V. Eleftheriades,et al.  Huygens’ metasurfaces from microwaves to optics: a review , 2018, Nanophotonics.

[28]  P. Szczepański,et al.  Effect of Nonlinear Loss and Gain in Multilayer PT-Symmetric Bragg Grating , 2017, IEEE Journal of Quantum Electronics.

[29]  Pai-Yen Chen,et al.  PT-symmetric metasurfaces: wave manipulation and sensing using singular points , 2017 .

[30]  Shanhui Fan,et al.  Unidirectional reflectionless light propagation at exceptional points , 2017 .

[31]  Hua Long,et al.  Exceptional points in Fano-resonant graphene metamaterials. , 2017, Optics express.

[32]  Huanyang Chen,et al.  Design of zero index metamaterials with PT symmetry using epsilon-near-zero media with defects , 2017 .

[33]  Yuang Wang,et al.  Lasing and anti-lasing in a single cavity , 2016, Nature Photonics.

[34]  Vincenzo Galdi,et al.  Exceptional points of degeneracy and P T symmetry in photonic coupled chains of scatterers , 2016, 1610.00414.

[35]  T. Lepetit,et al.  Exceptional points in three-dimensional plasmonic nanostructures , 2016, 1609.02276.

[36]  Ulrich Kuhl,et al.  Dynamically encircling an exceptional point for asymmetric mode switching , 2016, Nature.

[37]  Alessandro Toscano,et al.  Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers. , 2016, Optics letters.

[38]  S. Feng Loss-induced super scattering and gain-induced absorption. , 2016, Optics express.

[39]  C. Klinke,et al.  Synthesis and Characterization of Monodisperse Metallodielectric SiO2@Pt@SiO2 Core-Shell-Shell Particles. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[40]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[41]  Vincenzo Galdi,et al.  PT -symmetry-induced wave confinement and guiding in ε -near-zero metamaterials , 2015, 1502.05495.

[42]  S. J. van der Molen,et al.  Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties. , 2015, Chemical Society reviews.

[43]  Ye-Long Xu,et al.  Unidirectional Transmission Based on a Passive PT Symmetric Grating With a Nonlinear Silicon Distributed Bragg Reflector Cavity , 2014, IEEE Photonics Journal.

[44]  Vincenzo Galdi,et al.  Tunneling of obliquely incident waves through PT -symmetric epsilon-near-zero bilayers , 2014, 1401.1619.

[45]  J. Chen,et al.  Exceptional points in extraordinary optical transmission through dual subwavelength metallic gratings. , 2013, Optics express.

[46]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[47]  M. Infusino,et al.  Gain functionalized core–shell nanoparticles: the way to selectively compensate absorptive losses , 2012 .

[48]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[49]  Mélanie Ferrie,et al.  Gain induced optical transparency in metamaterials , 2011 .

[50]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[51]  Li Ge,et al.  PT-symmetry breaking and laser-absorber modes in optical scattering systems. , 2010, Physical review letters.

[52]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[53]  B. Grzybowski,et al.  Electrostatic aggregation and formation of core-shell suprastructures in binary mixtures of charged metal nanoparticles. , 2006, Nano letters.

[54]  H. Harney,et al.  Experimental observation of the topological structure of exceptional points. , 2001, Physical review letters.

[55]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[56]  Alfons van Blaaderen,et al.  Metallodielectric Colloidal Core−Shell Particles for Photonic Applications , 2002 .