Identifiability and Parameter Estimation of the Single Particle Lithium-Ion Battery Model

This paper investigates the identifiability and estimation of the parameters of the single particle model (SPM) for lithium-ion battery simulation. Identifiability is addressed both in principle and in practice. The approach begins by grouping parameters and partially nondimensionalising the SPM to determine the maximum expected degrees of freedom in the problem. We discover that excluding open-circuit voltage (OCV), there are only six independent parameters. We then examine the structural identifiability by considering whether the transfer function of the linearized SPM is unique. It is found that the model is unique provided that the electrode OCV functions have a known nonzero gradient, the parameters are ordered, and the electrode kinetics are lumped into a single charge-transfer resistance parameter. We then demonstrate the practical estimation of model parameters from measured frequency-domain experimental electrochemical impedance spectroscopy data, and show additionally that the parametrized model provides good predictive capabilities in the time domain, exhibiting a maximum voltage error of 20 mV between the model and the experiment over a 10-min dynamic discharge.

[1]  Stephen Duncan,et al.  Observability Analysis and State Estimation of Lithium-Ion Batteries in the Presence of Sensor Biases , 2015, IEEE Transactions on Control Systems Technology.

[2]  Venkatasailanathan Ramadesigan,et al.  Coordinate Transformation, Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks , 2011 .

[3]  D. Sauer,et al.  Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery II. Model Validation , 2015 .

[4]  Keld West,et al.  Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources , 1979 .

[5]  Ralph E. White,et al.  Online Estimation of the State of Charge of a Lithium Ion Cell , 2006, ECS Transactions.

[6]  Scott J. Moura,et al.  Better Batteries Through Electrochemistry , 2014 .

[7]  Euan McTurk,et al.  Minimally Invasive Insertion of Reference Electrodes into Commercial Lithium-Ion Pouch Cells , 2015 .

[8]  Euan McTurk,et al.  A Parametric Open Circuit Voltage Model for Lithium Ion Batteries , 2015 .

[10]  Miroslav Krstic,et al.  Constraint management in Li-ion batteries: A modified reference governor approach , 2013, 2013 American Control Conference.

[11]  Ralph E. White,et al.  Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy , 1998 .

[12]  Rolf Findeisen,et al.  State estimation of a reduced electrochemical model of a lithium-ion battery , 2010, Proceedings of the 2010 American Control Conference.

[13]  Nigel P. Brandon,et al.  Online Measurement of Battery Impedance Using Motor Controller Excitation , 2014, IEEE Transactions on Vehicular Technology.

[14]  Gan Ning,et al.  Cycle Life Modeling of Lithium-Ion Batteries , 2004 .

[15]  S. Moura,et al.  Enhanced Performance of Li-Ion Batteries via Modified Reference Governors and Electrochemical Models , 2015, IEEE/ASME Transactions on Mechatronics.

[16]  D. Sauer,et al.  Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery I. Determination of Parameters , 2015 .

[17]  Seyed Mohammad Mahdi Alavi,et al.  Structural identifiability of battery equivalent circuit models , 2015, ArXiv.

[18]  Viviane Cattin,et al.  A new optimization algorithm for a Li-Ion battery equivalent electrical circuit identification , 2012 .

[19]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[20]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[21]  Performance Evaluation of an Extended Kalman Filter for State Estimation of a Pseudo-2D Thermal-Electrochemical Lithium-Ion Battery Model , 2015 .

[22]  Hosam K. Fathy,et al.  Genetic parameter identification of the Doyle-Fuller-Newman model from experimental cycling of a LiFePO4 battery , 2011, Proceedings of the 2011 American Control Conference.

[23]  Jae-Ha Jang,et al.  Equivalent Circuit Evaluation Method of Lithium Polymer Battery Using Bode Plot and Numerical Analysis , 2011, IEEE Transactions on Energy Conversion.

[24]  Stephen Duncan,et al.  Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter , 2015, ArXiv.

[25]  Giorgio Rizzoni,et al.  Design and parametrization analysis of a reduced-order electrochemical model of graphite/LiFePO4 cells for SOC/SOH estimation , 2013 .

[26]  Richard D. Braatz,et al.  Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models , 2011 .

[27]  W. Bessler,et al.  Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior , 2014 .

[28]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[29]  A. Stefanopoulou,et al.  Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter , 2010 .

[30]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[31]  Ralph E. White,et al.  Parameter Estimation and Model Discrimination for a Lithium-Ion Cell , 2007 .

[32]  Arild Thowsen,et al.  Structural identifiability , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[33]  Rachid Outbib,et al.  Parameter identification of the lead-acid battery model , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[34]  Jasim Ahmed,et al.  Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.

[35]  Ralph E. White,et al.  Estimation of Diffusion Coefficient of Lithium in Carbon Using AC Impedance Technique , 2002 .

[36]  Hosam K. Fathy,et al.  Genetic identification and fisher identifiability analysis of the Doyle–Fuller–Newman model from experimental cycling of a LiFePO4 cell , 2012 .

[37]  Ralph E. White,et al.  Analytical Expression for the Impedance Response of an Insertion Electrode Cell , 2007 .

[38]  Christopher D. Rahn,et al.  Model-Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion Batteries , 2010, IEEE Transactions on Control Systems Technology.

[39]  Seyed Mohammad Mahdi Alavi,et al.  Identifiability of Generalized Randles Circuit Models , 2015, IEEE Transactions on Control Systems Technology.

[40]  L. Guzzella,et al.  Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell , 2010 .

[41]  Christopher D. Rahn,et al.  Model-based electrochemical estimation of lithium-ion batteries , 2008, 2008 IEEE International Conference on Control Applications.

[42]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[43]  Rik W. De Doncker,et al.  Impedance-based non-linear dynamic battery modeling for automotive applications , 2003 .

[44]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[45]  M. Krstić,et al.  Adaptive Partial Differential Equation Observer for Battery State-of-Charge/State-of-Health Estimation Via an Electrochemical Model , 2014 .

[46]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[47]  Shugang Jiang,et al.  A Parameter Identification Method for a Battery Equivalent Circuit Model , 2011 .

[48]  Gregory L. Plett,et al.  Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter , 2015 .

[49]  J. Ross Macdonald,et al.  Impedance spectroscopy , 2006, Annals of Biomedical Engineering.

[50]  Daniel T. Schwartz,et al.  The Impedance Analyzer: An Open-Source, Web-Based Tool for Sophisticated Interrogation of Experimental EIS Spectra , 2017 .