Symmetry breaking and optical negative index of closed nanorings

Metamaterials have extraordinary abilities, such as imaging beyond the diffraction limit and invisibility. Many metamaterials are based on split-ring structures, however, like atomic orbital currents, it has long been believed that closed rings cannot produce negative refractive index. Here we report a low-loss and polarization-independent negative-index metamaterial made solely of closed metallic nanorings. Using symmetry breaking that negatively couples the discrete nanorings, we measured negative phase delay in our composite 'chess metamaterial'. The formation of an ultra-broad Fano-resonance-induced optical negative-index band, spanning wavelengths from 1.3 to 2.3 μm, is experimentally observed in this structure. This discrete and mono-particle negative-index approach opens exciting avenues towards symmetry-controlled topological nanophotonics with on-demand linear and nonlinear responses.

[1]  Maria Kafesaki,et al.  Negative refractive index response of weakly and strongly coupled optical metamaterials , 2009, 0907.1119.

[2]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[3]  D. P. Tsai,et al.  Toroidal Dipolar Response in a Metamaterial , 2010, Science.

[4]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[5]  J. Lourtioz,et al.  Infrared metafilms on a dielectric substrate , 2009 .

[6]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[7]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[8]  A. Alú,et al.  Causality relations in the homogenization of metamaterials , 2011 .

[9]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[10]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[11]  L Martin-Moreno,et al.  Theory of negative-refractive-index response of double-fishnet structures. , 2008, Physical review letters.

[12]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[13]  P. Nordlander,et al.  Plasmon hybridization in stacked double gold nanorings with reduced symmetry. , 2008, Small.

[14]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[15]  K. Tsakmakidis,et al.  ‘Trapped rainbow’ storage of light in metamaterials , 2007, Nature.

[16]  Jean-Michel Lourtioz,et al.  Controlling plasmon hybridization for negative refraction metamaterials , 2009 .

[17]  Harald Giessen,et al.  Three-dimensional photonic metamaterials at optical frequencies. , 2008, Nature materials.

[18]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[19]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[20]  F. J. Rodríguez-Fortuño,et al.  Double-negative polarization-independent fishnet metamaterial in the visible spectrum. , 2009, Optics letters.

[21]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[22]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[23]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[24]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[25]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[26]  Xiaobo Yin,et al.  Proposed isotropic negative index in three-dimensional optical metamaterials , 2012 .

[27]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[28]  M. Kafesaki,et al.  Parametric investigation and analysis of fishnet metamaterials in the microwave regime , 2009 .

[29]  M. Wegener,et al.  Low-loss negative-index metamaterial at telecommunication wavelengths. , 2006, Optics letters.

[30]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[31]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[32]  H. Atwater,et al.  A single-layer wide-angle negative-index metamaterial at visible frequencies. , 2010, Nature materials.

[33]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[34]  V. Shalaev Optical negative-index metamaterials , 2007 .

[35]  H. Lezec,et al.  Negative Refraction at Visible Frequencies , 2007, Science.

[36]  P Lalanne,et al.  Theory of fishnet negative-index optical metamaterials. , 2011, Physical review letters.

[37]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[38]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.