Dimensions of random covering sets in Riemann manifolds

Let ${\pmb M}$, ${\pmb N}$ and ${\pmb K}$ be $d$-dimensional Riemann manifolds. Assume that ${\bf A}:=(A_n)_{n\in{\Bbb N}}$ is a sequence of Lebesgue measurable subsets of ${\pmb M}$ satisfying a necessary density condition and ${\bf x}:=(x_n)_{n\in {\Bbb N}}$ is a sequence of independent random variables which are distributed on ${\pmb K}$ according to a measure which is not purely singular with respect to the Riemann volume. We give a formula for the almost sure value of the Hausdorff dimension of random covering sets ${\bf E}({\bf x},{\bf A}):=\limsup_{n\to\infty}A_n(x_n)\subset {\pmb N}$. Here $A_n(x_n)$ is a diffeomorphic image of $A_n$ depending on $x_n$. We also verify that the packing dimensions of ${\bf E}({\bf x},{\bf A})$ equal $d$ almost surely.

[1]  J. Barral,et al.  Covering numbers of different points in Dvoretzky covering , 2005 .

[2]  P. Mattila Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability , 1995 .

[3]  Glyn Harman,et al.  Metric number theory , 1998 .

[4]  J. Kahane Some Random Series of Functions , 1985 .

[5]  Y. Peres,et al.  Limsup Random Fractals , 2000 .

[6]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[7]  Intersective sets and Diophantine approximation , 2004 .

[8]  A. Kechris Classical descriptive set theory , 1987 .

[9]  J. Hoffmann-jorgensen,et al.  Coverings of Metric Spaces with Randomly Placed Balls. , 1973 .

[10]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[11]  J. Hawkes ON THE COVERING OF SMALL SETS BY RANDOM INTERVALS , 1973 .

[12]  A. B. Cook Some unsolved problems. , 1952, Hospital management.

[13]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[14]  L. Carleson Selected Problems on Exceptional Sets , 1998 .

[15]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[16]  S. Seuret INHOMOGENEOUS COVERINGS OF TOPOLOGICAL MARKOV SHIFTS , 2016 .

[17]  Ai-Hua Fan,et al.  A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation , 2013 .

[18]  Glyn Harman METRIC DIOPHANTINE APPROXIMATION ON MANIFOLDS (Cambridge Tracts in Mathematics 137) , 2000 .

[19]  Claude Dellacherie Ensembles analytiques, capacités, mesures de Hausdorff , 1972 .

[20]  Stéphane Seuret,et al.  Diophantine approximation by orbits of expanding Markov maps , 2012, Ergodic Theory and Dynamical Systems.

[21]  B. Mandelbrot Renewal sets and random cutouts , 1972 .

[22]  A Dvoretzky,et al.  ON COVERING A CIRCLE BY RANDOMLY PLACED ARCS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Mandelbrot On Dvoretzky coverings for the circle , 1972 .

[24]  L. Shepp Covering the circle with random ARCS , 1972 .

[25]  K. Falconer Sets with Large Intersection Properties , 1994 .

[26]  Victor Beresnevich,et al.  A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures , 2004 .

[27]  Yimin Xiao,et al.  Hitting Probabilities of the Random Covering Sets , 2013 .

[28]  É. Borel Sur les séries de Taylor , 1897 .

[29]  S. Velani,et al.  The Shrinking Target Problem for Matrix Transformations of Tori , 1999, Advances in Mathematics.

[30]  J. Kahane Recouvrements aléatoires et théorie du potentiel , 1990 .

[31]  Bing Li,et al.  Hitting probabilities of random covering sets in tori and metric spaces , 2015, 1510.06630.

[32]  A. Besicovitch On the sum of digits of real numbers represented in the dyadic system. , 1935 .

[33]  Tomas Persson,et al.  A note on random coverings of tori , 2013, 1307.1455.

[34]  Arnaud Durand On randomly placed arcs on the circle , 2010 .

[35]  J. Kahane,et al.  Rareté des intervalles recouvrant un point dans un recouvrement aléatoire , 1993 .

[36]  Jun Wu,et al.  On the covering by small random intervals , 2004 .

[37]  Arnaud Durand Sets with large intersection and ubiquity , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.

[38]  How many intervals cover a point in Dvoretzky covering? , 2002 .

[39]  L. A. Shepp,et al.  Covering the line with random intervals , 1972 .

[40]  Chang-Pao Chen,et al.  Projections of random covering sets , 2013, 1311.1703.

[41]  R. Daniel Mauldin,et al.  Measure and dimension functions: measurability and densities , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  Youssef El Helou Recouvrement du tore T[q] par des ouverts aléatoires et dimension de Hausdorff de l'ensemble non recouvert , 1978 .

[43]  Yann Bugeaud,et al.  A NOTE ON INHOMOGENEOUS DIOPHANTINE APPROXIMATION , 2003, Glasgow Mathematical Journal.

[44]  Bing Li,et al.  Hausdorff dimension of affine random covering sets in torus , 2012, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[45]  S. Janson Random coverings in several dimensions , 1986 .

[46]  J. Kahane Random Coverings and Multiplicative Processes , 2000 .

[47]  J. Steif,et al.  Dynamical models for circle covering: Brownian motion and Poisson updating , 2006, math/0606297.

[48]  METRIC NUMBER THEORY (London Mathematical Society Monographs N.S. 18) By G LYN H ARMAN : 297 pp., £75.00 (LMS Members' price £56.25), ISBN 0 19 850083 1 (Clarendon Press, 1998). , 2000 .

[49]  H. Eggleston The fractional dimension of a set defined by decimal properties , 1949 .

[50]  K. Falconer Fractal Geometry Mathematical Foundations and Applications Third , 2013 .

[51]  Victor Beresnevich,et al.  Measure Theoretic Laws for Lim Sup Sets , 2004 .