An exact Turán result for the generalized triangle

AbstractLet Σk consist of all k-graphs with three edges D1, D2, D3 such that |D1 ∩ D2| = k − 1 and D1 Δ D2 ⊆ D3. The exact value of the Turán function ex(n, Σk) was computed for k = 3 by Bollobás [Discrete Math. 8 (1974), 21–24] and for k = 4 by Sidorenko [Math Notes 41 (1987), 247–259].Let the k-graph Tk ∈ Σk have edges $$ \{ 1, \ldots ,k\} , \{ 1,2, \ldots ,k - 1,k + 1\} , and \{ k,k + 1, \ldots ,2k - 1\} . $$ Frankl and Füredi [J. Combin. Theory Ser. (A) 52 (1989), 129–147] conjectured that there is n0 = n0(k) such that ex(n, Tk) = ex(n, Σk) for all n ≥ n0 and had previously proved this for k = 3 in [Combinatorica 3 (1983), 341–349]. Here we settle the case k = 4 of the conjecture.

[1]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[2]  A. F. Sidorenko,et al.  The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs , 1987 .

[3]  Dhruv Mubayi,et al.  A new generalization of Mantel's theorem to k-graphs , 2007, J. Comb. Theory, Ser. B.

[4]  Vojtech Rödl,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.

[5]  Peter Keevash,et al.  ON A HYPERGRAPH TUR ´ AN PROBLEM OF FRANKL , 2005 .

[6]  Gyula O. H. Katona,et al.  Extremal Problems for Hypergraphs , 1975 .

[7]  P. Erdös On an extremal problem in graph theory , 1970 .

[8]  James B. Shearer,et al.  A New Construction for Cancellative Families of Sets , 1996, Electron. J. Comb..

[9]  Béla Bollobás,et al.  Three-graphs without two triples whose symmetric difference is contained in a third , 1974, Discret. Math..

[10]  Zoltán Füredi,et al.  A new generalization of the Erdős-Ko-Rado theorem , 1983, Comb..

[11]  Zoltán Füredi,et al.  Extremal problems whose solutions are the blowups of the small witt-designs , 1989, J. Comb. Theory, Ser. A.

[12]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[13]  Miklós Simonovits,et al.  Supersaturated graphs and hypergraphs , 1983, Comb..

[14]  Benny Sudakov,et al.  The Turán Number Of The Fano Plane , 2005, Comb..

[15]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[16]  Benny Sudakov,et al.  On A Hypergraph Turán Problem Of Frankl , 2005, Comb..

[17]  Dhruv Mubayi,et al.  Stability theorems for cancellative hypergraphs , 2004, J. Comb. Theory, Ser. B.

[18]  V. Rödl,et al.  The counting lemma for regular k-uniform hypergraphs , 2006 .

[19]  Gabor Elek,et al.  Limits of Hypergraphs, Removal and Regularity Lemmas. A Non-standard Approach , 2007, 0705.2179.

[20]  Miklós Simonovits,et al.  Triple Systems Not Containing a Fano Configuration , 2005, Comb. Probab. Comput..