MAGNETIZATION DEGREE AT THE JET BASE OF M87 DERIVED FROM THE EVENT HORIZON TELESCOPE DATA: TESTING THE MAGNETICALLY DRIVEN JET PARADIGM

We explore the degree of magnetization at the jet base of M87 by using the observational data of the event horizon telescope (EHT) at 230 GHz obtained by Doeleman et al. By utilizing the method in Kino et al., we derive the energy densities of magnetic fields (UB) and electrons and positrons (U±) in the compact region detected by EHT (EHT-region) with its full-width-half-maximum size 40 µas. First, we assume that an optically-thick region for synchrotron self absorption (SSA) exists in the EHT-region. Then, we find that the SSA-thick region should not be too large not to overproduce the Poynting power at the EHT-region. The allowed ranges of the angular size and the magnetic field strength of the SSA-thick region are 21 µas ≤ θthick ≤ 26.3 µas and 50 G ≤ Btot ≤ 124 G, respectively. Correspondingly UB ≫ U± is realized in this case. We further examine the composition of plasma and energy density of protons by utilizing the Faraday rotation measurement (RM) at 230 GHz obtained by Kuo et al. Then, we find that UB ≫ U± + Up still holds in the SSA-thick region. Second, we examine the case when EHT-region is fully SSA-thin. Then we find that UB ≫ U± still holds unless protons are relativistic. Thus, we conclude that magnetically driven jet scenario in M87 is viable in terms of energetics close to ISCO scale unless the EHT-region is fully SSA-thin and relativistic protons dominated. Subject headings: galaxies: active — galaxies: jets — radio continuum: galaxies —black hole physics —radiation mechanisms: non-thermal

[1]  J. J. Wittels,et al.  The very flat radio spectrum of 0735 plus 178 - A cosmic conspiracy , 1980 .

[2]  CONSTRAINING THE SIZE OF THE DARK REGION AROUND THE M87 BLACK HOLE BY SPACE-VLBI OBSERVATIONS , 2011, 1102.3583.

[3]  S. Mineshige,et al.  Black-Hole Accretion Disks: Towards a New Paradigm , 2008 .

[4]  Eric Agol,et al.  The size of the jet launching region in M87 , 2011, 1109.6011.

[5]  Karl Gebhardt,et al.  THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87 , 2009, 0906.1492.

[6]  K. Toma,et al.  BARYON LOADING OF ACTIVE GALACTIC NUCLEUS JETS MEDIATED BY NEUTRONS , 2012, 1205.6868.

[7]  E. Fomalont,et al.  Approaching Micro-Arcsecond Resolution with VSOP-2: Astrophysics and Technologies , 2009 .

[8]  I. Okamoto Force-free pulsar magnetosphere. I. The steady, axisymmetric theory for the charge-separated plasma , 1974 .

[9]  General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[10]  Eric W. Peng,et al.  The acs virgo cluster survey. X. half-light radii of globular clusters in early-type galaxies : Environmental dependencies and a standard ruler for distance estimation , 2005 .

[11]  F. Massaro,et al.  FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87 , 2009, 0910.3565.

[12]  T. Jones,et al.  Physics of Compact Nonthermal Sources. I. Theory of Radiation Processes , 1974 .

[13]  Mitchell C. Begelman,et al.  Asymptotic structure of hydromagnetically driven relativistic winds , 1991 .

[14]  A. Bhattacharjee,et al.  FAST MAGNETIC RECONNECTION AND PARTICLE ACCELERATION IN RELATIVISTIC LOW-DENSITY ELECTRON–POSITRON PLASMAS WITHOUT GUIDE FIELD , 2012 .

[15]  H. Nagakura,et al.  HYSTERESIS OF BACKFLOW IMPRINTED IN COLLIMATED JETS , 2009, 0912.3662.

[16]  K. Toma,et al.  EFFECTS OF HIGH-ENERGY PARTICLES ON ACCRETION FLOWS ONTO A SUPERMASSIVE BLACK HOLE , 2014, 1407.0115.

[17]  A. Broderick,et al.  PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS , 2010, 1006.5015.

[18]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[19]  A. Marconi,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997 .

[20]  Sang-Sung Lee INTRINSIC BRIGHTNESS TEMPERATURE OF COMPACT RADIO SOURCES AT 86GHZ , 2013, 1311.3378.

[21]  F. Aharonian,et al.  PROBING THE CENTRAL BLACK HOLE IN M87 WITH GAMMA-RAYS , 2012, 1208.2702.

[22]  L. Ho,et al.  Statistical Properties of Radio Emission from the Palomar Seyfert Galaxies , 2001, astro-ph/0105373.

[23]  O. Skjaeraasen,et al.  The Sigma Problem of the Crab Pulsar Wind , 2003, astro-ph/0309573.

[24]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[25]  Geoffrey V. Bicknell,et al.  Understanding the Kiloparsec-Scale Structure of M87 , 1996 .

[26]  K. Asada,et al.  THE PARABOLIC JET STRUCTURE IN M87 AS A MAGNETOHYDRODYNAMIC NOZZLE , 2013, 1308.1436.

[27]  K. Asano,et al.  A RELATIVISTIC ELECTRON–POSITRON OUTFLOW FROM A TEPID FIREBALL , 2008, 0812.2102.

[28]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[29]  Eric Agol,et al.  Viewing the Shadow of the Black Hole at the Galactic Center. , 2000 .

[30]  J. Zensus,et al.  Superluminal Radio Sources , 1988 .

[31]  A. Wilson,et al.  Chandra Imaging of the X-Ray Core of the Virgo Cluster , 2002, astro-ph/0202504.

[32]  I. Okamoto Do magnetized winds self-collimate? , 1999 .

[33]  T. Jones,et al.  Physics of compact nonthermal sources. III - Energetic considerations. [electron synchrotron radiation , 1974 .

[34]  A. Marscher Accurate formula for the self-Compton X-ray flux density from a uniform, spherical, compact radio source. , 1983 .

[35]  Rohta Takahashi,et al.  Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes , 2004, astro-ph/0405099.

[36]  A View through Faraday’s Fog. II. Parsec-Scale Rotation Measures in 40 Active Galactic Nuclei , 2003, astro-ph/0405534.

[37]  S. Mineshige,et al.  Black-Hole Accretion Disks , 1999 .

[38]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[39]  M. Lister,et al.  The Innermost Regions of Relativistic Jets and Their Magnetic Fields The Innermost Regions of Relativistic Jets and Their Magnetic Fields , 2013 .

[40]  Mareki Honma,et al.  High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA , 2013, 1309.3519.

[41]  A. Loeb,et al.  Properties of the radio-emitting gas around Sgr A* , 2007, astro-ph/0702043.

[42]  Richard Dodson,et al.  HIGH-PRECISION ASTROMETRIC MILLIMETER VERY LONG BASELINE INTERFEROMETRY USING A NEW METHOD FOR ATMOSPHERIC CALIBRATION , 2011, 1101.2051.

[43]  S. Odell,et al.  Transfer of polarized radiation in self-absorbed synchrotron sources. I - Results for a homogeneous source. [astrophysics , 1977 .

[44]  Mareki Honma,et al.  THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII , 2013, 1308.1411.

[45]  H. Nagakura,et al.  DIRECT TIME RADIO VARIABILITY INDUCED BY NON-AXISYMMETRIC STANDING ACCRETION SHOCK INSTABILITY: IMPLICATIONS FOR M87 , 2010, 1001.2014.

[46]  R. Blandford,et al.  Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes , 2012, Science.

[47]  A. Marscher Structure of radio sources with remarkably flat spectra - PKS 0735+178. [BL Lacertae object] , 1977 .

[48]  T. Uchida THEORY OF FORCE-FREE ELECTROMAGNETIC FIELDS. I. GENERAL THEORY , 1997 .

[49]  H. Poincaré,et al.  Les Méthodes nouvelles de la Mécanique céleste and An Introduction to the Study of Stellar Structure , 1958 .

[50]  C. Gammie,et al.  A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole , 2004, astro-ph/0404512.

[51]  W. Alef,et al.  Sub-Milliarcsecond Imaging of Sgr A* and M 87 , 2006, astro-ph/0607072.

[52]  Canadian Institute for Theoretical Astrophysics,et al.  DETECTING FLARING STRUCTURES IN SAGITTARIUS A* WITH HIGH-FREQUENCY VLBI , 2008, 0809.3424.

[53]  Canada.,et al.  IMAGING THE SUPERMASSIVE BLACK HOLE SHADOW AND JET BASE OF M87 WITH THE EVENT HORIZON TELESCOPE , 2014, 1404.7095.

[54]  E. Quataert,et al.  Constraining the Accretion Rate onto Sagittarius A* Using Linear Polarization , 2000, astro-ph/0004286.

[55]  Martin J. Rees,et al.  Theory of extragalactic radio sources , 1984 .

[56]  M. Kino,et al.  CALORIMETRY OF ACTIVE GALACTIC NUCLEUS JETS: TESTING PLASMA COMPOSITION IN CYGNUS A , 2012, 1204.3363.

[57]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[58]  T. Jones,et al.  Physics of Compact Nonthermal Sources. II. Determination of Physical Parameters , 1974 .

[59]  P. Becker,et al.  A Self-consistent Model for the Formation of Relativistic Outflows in Advection-dominated Accretion Disks with Shocks , 2004, astro-ph/0411801.

[60]  Magnetically Driven Accretion Flows in the Kerr Metric. IV. Dynamical Properties of the Inner Disk , 2004, astro-ph/0409231.

[61]  Eric W. Peng,et al.  THE ACS FORNAX CLUSTER SURVEY. V. MEASUREMENT AND RECALIBRATION OF SURFACE BRIGHTNESS FLUCTUATIONS AND A PRECISE VALUE OF THE FORNAX–VIRGO RELATIVE DISTANCE , 2009, 0901.1138.

[62]  V. L. Ginzburg,et al.  Cosmic Magnetobremsstrahlung (Synchrotron Radiation) , 1965 .

[63]  A. Loeb,et al.  IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN , 2008, 0812.0366.

[64]  M. Wright,et al.  1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.

[65]  R. Dodson,et al.  THE APPLICATION OF MULTIVIEW METHODS FOR HIGH-PRECISION ASTROMETRIC SPACE VLBI AT LOW FREQUENCIES , 2013, 1303.3402.

[66]  M. Hoshino,et al.  Preferential positron heating and acceleration by synchrotron maser instabilities in relativistic positron--electron--proton plasmas , 1991 .

[67]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[68]  M. Kino,et al.  RELATIVISTIC ELECTRONS AND MAGNETIC FIELDS OF THE M87 JET ON THE ∼10 SCHWARZSCHILD RADII SCALE , 2014, 1403.0650.

[69]  Relativistic Magnetohydrodynamics with Application to Gamma-Ray Burst Outflows. I. Theory and Semianalytic Trans-Alfvénic Solutions , 2003, astro-ph/0303482.

[70]  Masanori Nakamura,et al.  DISCOVERY OF SUB- TO SUPERLUMINAL MOTIONS IN THE M87 JET: AN IMPLICATION OF ACCELERATION FROM SUB-RELATIVISTIC TO RELATIVISTIC SPEEDS , 2013, 1311.5709.

[71]  N. E. Kassim,et al.  M87 at 90 Centimeters: A Different Picture , 2000, astro-ph/0006150.

[72]  S. Mineshige,et al.  Spectrum of Optically Thin Advection-dominated Accretion Flow around a Black Hole: Application to Sagittarius A* , 1997, astro-ph/9708234.

[73]  John A. Biretta,et al.  Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole , 1999, Nature.

[74]  Tsuyoshi Inoue,et al.  ENHANCED DISSIPATION RATE OF MAGNETIC FIELD IN STRIPED PULSAR WINDS BY THE EFFECT OF TURBULENCE , 2012, 1206.2087.

[75]  T. Chiueh,et al.  Electromagnetically Driven Relativistic Jets: A Class of Self-similar Solutions , 1992 .

[76]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[77]  M. Kino,et al.  A STRONG RADIO BRIGHTENING AT THE JET BASE OF M 87 DURING THE ELEVATED VERY HIGH ENERGY GAMMA-RAY STATE IN 2012 , 2014, 1405.1082.

[78]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[79]  Martin J. Rees,et al.  The matter content of the jet in M87: evidence for an electron—positronjet , 1996 .

[80]  F. Walter,et al.  A Search for Molecular Gas in the Nucleus of M87 and Implications for the Fueling of Supermassive Black Holes , 2006, astro-ph/0610488.

[81]  P. Koch,et al.  MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY , 2014, 1402.5238.

[82]  Kazunori Akiyama,et al.  Super-resolution imaging with radio interferometry using sparse modeling , 2014, 1407.2422.

[83]  G. Rybicki,et al.  Radiative processes in astrophysics , 1979 .

[84]  S. Komissarov,et al.  Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources , 2008, 0811.1467.

[85]  Kenneth I. Kellermann,et al.  The Spectra of Opaque Radio Sources , 1969 .

[86]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[87]  F. Takahara,et al.  Relativistic Outflow of Electron-Positron Pair Plasma from a Wien Equilibrium State , 2002 .

[88]  RESOLVING THE INNER JET STRUCTURE OF 1924-292 WITH THE EVENT HORIZON TELESCOPE , 2012, 1208.4402.

[89]  D. Meier,et al.  Extraction of Black Hole Rotational Energy by a Magnetic Field and the Formation of Relativistic Jets , 2002, Science.

[90]  M. Hoshino PARTICLE ACCELERATION DURING MAGNETOROTATIONAL INSTABILITY IN A COLLISIONLESS ACCRETION DISK , 2013, 1306.6720.

[91]  V. I. Slysh,et al.  The synchro-Compton limit of the brightness temperature of nonstationary radio sources , 1992 .

[92]  A. Bhattacharjee,et al.  Fast collisionless reconnection in electron-positron plasmas , 2006 .

[93]  K. Hirotani Kinetic Luminosity and Composition of Active Galactic Nuclei Jets , 2004, astro-ph/0411087.

[94]  J. Kirk,et al.  A synchrotron self-Compton model with low-energy electron cut-off for the blazar S5 0716+714 , 2007, 0710.1564.

[95]  Masaaki Takahashi,et al.  Relativistic Acceleration of Magnetically Driven Jets , 2003, astro-ph/0303509.

[96]  H. Hirabayashi,et al.  Milliarcsecond-Scale Spectral Properties and Jet Motions in M 87 , 2005, astro-ph/0511383.

[97]  M. Ostrowski,et al.  Dynamics and high-energy emission of the flaring HST-1 knot in the M 87 jet , 2006 .

[98]  J. Arons,et al.  Heating and Nonthermal Particle Acceleration in Relativistic, Transverse Magnetosonic Shock Waves in Proton-Electron-Positron Plasmas , 2006, astro-ph/0609034.