A critical discussion of the physics of wood–water interactions

This paper reviews recent findings on wood–water interaction and puts them into context of established knowledge in the field. Several new findings challenge prevalent theories and are critically discussed in an attempt to advance current knowledge and highlight gaps. The focus of this review is put on water in the broadest concept of wood products, that is, the living tree is not considered. Moreover, the review covers the basic wood–water relation, states and transitions. Secondary effects such as the ability of water to alter physical properties of wood are only discussed in cases where there is an influence on state and/or transition.

[1]  Masato Yoshida,et al.  Mechanical interaction between cellulose microfibrils and matrix substances in wood cell walls induced by repeated wet-and-dry treatment , 2012, Cellulose.

[2]  P. Aggarwal,et al.  Effect of moisture sorption state on transverse dimensional changes in wood , 2004, Holz als Roh- und Werkstoff.

[3]  N. K. ADAM,et al.  The Adsorption of Gases and Vapours , 1945, Nature.

[4]  E. Tangstad,et al.  Pore Structure Characterization of Mesoporous/Microporous Materials by 1H NMR Using Water as a Probe Molecule , 1997 .

[5]  S. Zelinka,et al.  Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry , 2012 .

[6]  M. W. Kelly,et al.  Water vapour sorption rates by wood cell walls. , 2007 .

[7]  Kuang-Chong Wu,et al.  Case‐II diffusion in polymers. I. Transient swelling , 1987 .

[8]  S. A. Stern,et al.  The dual-mode solution of vinyl chloride monomer in poly(vinyl chloride) , 1984 .

[9]  W. Simpson Sorption theories applied to wood. , 2007 .

[10]  C. Hill,et al.  Dimensional Changes in Corsican Pine Sapwood due to Chemical Modification with Linear Chain Anhydrides , 1999 .

[11]  J. S. Vrentas,et al.  SORPTION IN GLASSY POLYMERS , 1991 .

[12]  A. C. Newns The sorption and desorption kinetics of water in a regenerated cellulose , 1959 .

[13]  S. Svensson,et al.  Theory of transport processes in wood below the fiber saturation point. Physical background on the microscale and its macroscopic description , 2011 .

[14]  F. Kamke,et al.  Cluster theory for water sorption in wood , 2004, Wood Science and Technology.

[15]  Alfred J. Stamm,et al.  The fiber-saturation point of wood as obtained from electrical conductivity measurements , 1929 .

[16]  T. Higuchi,et al.  Biodegradation of Lignin , 1981 .

[17]  C. O. Seborg,et al.  Sorption of Water Vapor by Paper-Marking Materials I—Effect of Beating1 , 1931 .

[18]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[19]  D. Hunt,et al.  Longitudinal moisture-shrinkage coefficients of softwood at the mechano-sorptive creep limit , 1988, Wood Science and Technology.

[20]  Hiroyuki Yamamoto,et al.  Behavior of the cellulose microfibril in shrinking woods , 2006, Journal of Wood Science.

[21]  R. Hernández Influence of moisture sorption history on the swelling of sugar maple wood and some tropical hardwoods , 1993, Wood Science and Technology.

[22]  R. W. Wellwood,et al.  Short-Term Creep as Related To Microfibril Angle , 2007 .

[23]  P. U. A. Grossman,et al.  Requirements for a model that exhibits mechano-sorptive behaviour , 1976, Wood Science and Technology.

[24]  C. Skaar,et al.  Wood―water relationships , 1984 .

[25]  P. Hoffmeyer,et al.  Water sorption in wood and modified wood at high values of relative humidity. Part 2: Appendix. Theoretical assessment of the amount of capillary water in wood microvoids , 2010 .

[26]  G. Fonnum,et al.  Pore morphology of porous polymer particles probed by NMR relaxometry and NMR cryoporometry. , 2005, The journal of physical chemistry. B.

[27]  C. Hill,et al.  The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus , 2010, Wood Science and Technology.

[28]  R. Hernández,et al.  Changes In Shrinkage And Tangential Compression Strength Of Sugar Maple Below And Above The Fiber Saturation Point , 2007 .

[29]  I. Furó,et al.  NMR cryoporometry: Principles, applications and potential , 2009 .

[30]  P. Hoffmeyer,et al.  Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions , 2011 .

[31]  K. Murata,et al.  Microscopic observation of transverse swelling of latewood tracheid: effect of macroscopic/mesoscopic structure , 2006, Journal of Wood Science.

[32]  L. Salmén,et al.  Water Sorption to Hydroxyl and Carboxylic Acid Groups in Carboxymethylcellulose (CMC) Studied with NIR-spectroscopy , 1998 .

[33]  J. Chirife,et al.  Technical note: On the equivalence of isotherm equations , 2007 .

[34]  A. Venkateswaran Sorption of aqueous and nonaqueous media by wood and cellulose , 1970 .

[35]  L. Salmén,et al.  Association of water to polar groups; estimations by an adsorption model for ligno-cellulosic materials , 1996 .

[36]  Gary Newman,et al.  The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model , 2011 .

[37]  J. Simons,et al.  Hydrogen bonding and cooperativity in isolated and hydrated sugars: mannose, galactose, glucose, and lactose. , 2005, Journal of the American Chemical Society.

[38]  S. Svensson,et al.  Theoretical analysis of moisture transport in wood as an open porous hygroscopic material , 2010 .

[39]  Erich Adler,et al.  Lignin chemistry—past, present and future , 1977, Wood Science and Technology.

[40]  Michael R. Landry,et al.  Thermoporometry by differential scanning calorimetry: experimental considerations and applications , 2005 .

[41]  S. E. Sheppard The structure of xerogels of cellulose and derivatives , 1933 .

[42]  R. Hernández,et al.  Shrinkage of Three Tropical Hardwoods Below and Above the Fiber Saturation Point , 2007 .

[43]  F. Kollmann Eine Gleichung der Sorptionsisotherme , 2004, The Science of Nature.

[44]  A. Sakakibara A structural model of softwood lignin , 1980, Wood Science and Technology.

[45]  L. Berglund,et al.  Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. , 2008, The journal of physical chemistry. B.

[46]  D. H. Everett A general approach to hysteresis. Part 4. An alternative formulation of the domain model , 1955 .

[47]  L. Damkilde,et al.  A model for non-fickian moisture transfer in wood , 2004 .

[48]  G. Christensen Sorption and Swelling within Wood Cell Walls , 1967, Nature.

[49]  L. Salmén,et al.  Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. , 2005, Biomacromolecules.

[50]  J. Seifert Zur Sorption und Quellung von Holz und Holzwerkstoffen—Zweite Mitteilung: Das Quellungsverhalten von Holz und Holzwerkstoffen , 1972, Holz als Roh- und Werkstoff.

[51]  A. Stamm,et al.  A convenient six-tube vapor sorption apparatus , 1941 .

[52]  Dominique Derome,et al.  Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. , 2011, Journal of structural biology.

[53]  F. Debeaufort,et al.  Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. , 2002, Journal of agricultural and food chemistry.

[54]  P. Hoffmeyer,et al.  Water sorption in wood and modified wood at high values of relative humidity. Part I: Results for untreated, acetylated, and furfurylated Norway spruce , 2010 .

[55]  L. C. Spark,et al.  Structure and mechanical properties of vegetable fibres. I. The influence of strain on the orientation of cellulose microfibrils in sisal leaf fibre , 1957, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[56]  J. E. Stone,et al.  Effect of component removal upon the porous structure of the cell wall of wood , 1965 .

[57]  A. Hanhijärvi,et al.  Experimental indication of interaction between viscoelastic and mechano-sorptive creep , 1998, Wood Science and Technology.

[58]  L. Salmén,et al.  Reflections on the ultrastructure of softwood fibers , 2006 .

[59]  D M Griffin,et al.  WATER POTENTIAL AND WOOD-DECAY FUNGI , 1977 .

[60]  G. R. Williams,et al.  An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood , 2005 .

[61]  G. Christensen,et al.  Die Geschwindigkeit der Wasserdampfsorption durch Holz , 1959, Holz als Roh- und Werkstoff.

[62]  L. Salmén,et al.  Molecular mechanisms involved in creep phenomena of paper , 2001 .

[63]  A. Stamm Combined bound-water and water-vapour diffusion into Sitka Spruce. , 1960 .

[64]  P. Peralta Modeling Wood Moisture Sorption Hysteresis using the Independent-Domain Theory , 2007 .

[65]  H. Becker,et al.  Studies on dynamic torsional viscoelasticity of wood , 1968, Wood Science and Technology.

[66]  G. Almeida,et al.  Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point , 2006, Wood Science and Technology.

[67]  G. Christensen,et al.  Effect of previous history on kinetics of sorption by wood cell walls , 1969 .

[68]  R. Dent,et al.  A Multilayer Theory for Gas Sorption , 1977 .

[69]  J. Crank,et al.  A theoretical investigation of the influence of molecular relaxation and internal stress on diffusion in polymers , 1953 .

[70]  P. Niemz,et al.  Thermal behaviour of Norway spruce and European beech in and between the principal anatomical directions , 2011 .

[71]  J. Babbitt ON THE DIFFERENTIAL EQUATIONS OF DIFFUSION , 1950 .

[72]  S. Avramidis,et al.  Behaviour of Solid Wood and Bound Water as a Function of Moisture Content. A Proton Magnetic Resonance Study , 1994 .

[73]  Robert J. Ross,et al.  Wood handbook : wood as an engineering material , 2010 .

[74]  T. Elder,et al.  Moisture in untreated, a cetylated, and furfurylated Norway spruce studied during drying using time domain NMR , 2008 .

[75]  Peter J. McDonald,et al.  A study of water exchange in wood by means of 2D NMR relaxation correlation and exchange , 2010 .

[76]  J. Babbitt ON THE ADSORPTION OF WATER VAPOUR BY CELLULOSE , 1942 .

[77]  Henrik Lund Frandsen,et al.  Selected Constitutive Models for Simulating the Hygromechanical Response of Wood , 2007 .

[78]  F. Long,et al.  Concentration Gradients for Diffusion of Vapors in Glassy Polymers and their Relation to Time Dependent Diffusion Phenomena1,2 , 1960 .

[79]  Lennart Salmén,et al.  The Softening Behavior of Hemicelluloses Related to Moisture , 2003 .

[80]  H. Frandsen,et al.  A revised multi-Fickian moisture transport model to describe non-Fickian effects in wood , 2007 .

[81]  G. Almeida,et al.  Changes in Physical Properties of Yellow Birch Below and Above the Fiber Saturation Point , 2007 .

[82]  H. Lyr,et al.  The physiology of woody plants. , 1967 .

[83]  F. Long,et al.  Two-stage Sorption and Desorption of Organic Vapors in Cellulose Acetate1,2 , 1955 .

[84]  J. Desbrières,et al.  Characterisation of sorbed water molecules on neutral and ionic polysaccharides. , 1996, International journal of biological macromolecules.

[85]  William T. Simpson,et al.  Predicting Equilibrium Moisture Content of Wood by Mathematical Models , 1973 .

[86]  G. M. Irvine,et al.  The glass transitions of lignin and hemicellulose and their measurement by differential thermal analysis , 1984 .

[87]  A. J. Hailwood,et al.  Absorption of water by polymers: analysis in terms of a simple model , 1946 .

[88]  E. Gamstedt,et al.  Mixed numerical–experimental methods in wood micromechanics , 2012, Wood Science and Technology.

[89]  H. Chanzy,et al.  The hydrogen bond network in I β cellulose as observed by infrared spectrometry , 2000 .

[90]  A. C. O'sullivan Cellulose: the structure slowly unravels , 1997, Cellulose.

[91]  W. W. Barkas,et al.  Swelling of Wood under Stress , 1950, Nature.

[92]  E. Sjöström,et al.  Wood Chemistry: Fundamentals and Applications , 1981 .

[93]  M. Himmel,et al.  Computer simulation studies of microcrystalline cellulose Iβ , 2006 .

[94]  T. Elder,et al.  Moisture in untreated, acetylated, and furfurylated Norway spruce monitored during drying below fiber saturation using time domain NMR. , 2009 .

[95]  J. S. Vrentas,et al.  Hysteresis Effects for Sorption in Glassy Polymers , 1996 .

[96]  J. G. Downes,et al.  Sorption kinetics of water vapor in wool fibers , 1958 .

[97]  L. Rockland,et al.  Water activity: influences on food quality. , 1981 .

[98]  Chia-ming Chen,et al.  Wettability and the hysteresis effect in the sorption of water vapor by wood , 1968, Wood Science and Technology.

[99]  S. Avramidis,et al.  Analysis of the Wood Sorption Isotherm Using Clustering Theory , 1993 .

[100]  T. Hatakeyama,et al.  Studies on Bound Water of Cellulose by Differential Scanning Calorimetry , 1981 .

[101]  B. Hinterstoisser,et al.  Moisture uptake in native cellulose – the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange , 2006 .

[102]  S. Zabler,et al.  Moisture changes in the plant cell wall force cellulose crystallites to deform. , 2010, Journal of structural biology.

[103]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[104]  S. Bruin,et al.  Water activity and its estimation in food systems: theoretical aspects , 1978 .

[105]  B. Djolani Hystérèse et effets de second ordre de la sorption d'humidité dans le bois aux températures de 5°, 21°, 35°, 50° C , 1972 .

[106]  S. Svensson,et al.  Modelling time-dependent mechanical behaviour of softwood using deformation kinetics , 2011 .

[107]  A. MacKay,et al.  Proton magnetic resonance techniques for characterization of water in wood: application to white spruce , 2004, Wood Science and Technology.

[108]  Kentaro Abe,et al.  Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction , 2005, Journal of Wood Science.

[109]  J. Desbrières,et al.  Types of adsorbed water in relation to the ionic groups and their counter-ions for some cellulose derivatives , 1994 .

[110]  J. E. Stone,et al.  The Effect of Component Removal Upon the Porous Structure of the Cell Wall of Wood. II. Swelling in Water and the Fiber Saturation Point , 1967, May 2022.

[111]  M. Roderick,et al.  Plant-water relations and the fibre saturation point. , 2005, The New phytologist.

[112]  C. Joly,et al.  Partial masking of cellulosic fiber hydrophilicity for composite applications. Water sorption by chemically modified fibers , 1996 .

[113]  W. Cǒté,et al.  Principles of Wood Science and Technology: I Solid Wood , 1977 .

[114]  Timothy G. Rials,et al.  Relaxation behaviour of the amorphous components of wood , 1987 .

[115]  Victor Rudolph,et al.  Dimensional Change Behavior of Caribbean Pine Using an Environmental Scanning Electron Microscope , 2006 .

[116]  J. Gril,et al.  Evidence of a physical ageing phenomenon in wood , 1996 .

[117]  C. Skaar Wood-Water Relations , 1988, Springer Series in Wood Science.

[118]  Zaihan Jalaludin,et al.  A rheological description of the water vapour sorption kinetics behaviour of wood invoking a model using a canonical assembly of Kelvin-Voigt elements and a possible link with sorption hysteresis , 2011 .

[119]  C. Chiu,et al.  Radial distribution patterns of the green moisture content in trunks of 46-year-old red cypress (Chamaecyparis formosensis) , 2007, Journal of Wood Science.

[120]  L. Weichert Untersuchungen über das Sorption- und Quellungsverhalten von Fichte, Buche und Buchen-Preßvollholz bei Temperaturen zwischen 20° und 100°C , 1963, Holz als Roh- und Werkstoff.