Relationship between dipole parameter estimation errors and measurement conditions in magnetoencephalography

In this study, a model in a computer simulation uses a single current dipole in a spherical homogeneous medium. Dipole parameters are estimated using a moving dipole procedure. Signal-to-noise ratio (SNR) is defined as the square-root of the ratio of the average signal power to the average noise power over all measurement points. At SNR>20, accurate estimation can be carried out independently of dipole depth and coil size. At SNR<20, dipole depth influences estimation error. When the dipole is located near the center of the sphere, the measurement region should include both extrema of the magnetic field to minimize estimation error. However, when the dipole is not so deep, the position of the measurement region does not influence estimation error. When SNR<4, estimation error increases as coil size increases. Coil size minimizing estimation error is determined by the ratio of environmental magnetic field noise to electrical noise. For a constant size of measurement region, increasing the number of measurement points decreases estimation error to a certain level. This error level depends on SNR.<<ETX>>