The high risk HPV16 L2 minor capsid protein has multiple transport signals that mediate its nucleocytoplasmic traffic.

[1]  R. Roden,et al.  Papillomavirus Infection Requires γ Secretase , 2010, Journal of Virology.

[2]  M. Sapp,et al.  Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus , 2009, The FEBS journal.

[3]  D. Lowy,et al.  Concatenated Multitype L2 Fusion Proteins as Candidate Prophylactic Pan-Human Papillomavirus Vaccines , 2009, Journal of the National Cancer Institute.

[4]  Harald zur Hausen,et al.  Papillomaviruses in the causation of human cancers - a brief historical account. , 2009, Virology.

[5]  D. Lowy,et al.  Concatenated Multitype L2 Fusion Proteins as Candidate Prophylactic Pan-Human Papillomavirus Vaccines , 2009, Journal of the National Cancer Institute.

[6]  R. Roden,et al.  Expression pattern and subcellular localization of human papillomavirus minor capsid protein L2. , 2009, The American journal of pathology.

[7]  Gilles A. Spoden,et al.  Clathrin- and Caveolin-Independent Entry of Human Papillomavirus Type 16—Involvement of Tetraspanin-Enriched Microdomains (TEMs) , 2008, PloS one.

[8]  A. Wandinger-Ness,et al.  Caveolin-1-Dependent Infectious Entry of Human Papillomavirus Type 31 in Human Keratinocytes Proceeds to the Endosomal Pathway for pH-Dependent Uncoating , 2008, Journal of Virology.

[9]  B. Trus,et al.  Arrangement of L2 within the Papillomavirus Capsid , 2008, Journal of Virology.

[10]  I. Bossis,et al.  A Protective and Broadly Cross-Neutralizing Epitope of Human Papillomavirus L2 , 2007, Journal of Virology.

[11]  M. Ozbun,et al.  Human Papillomavirus Type 31 Uses a Caveolin 1- and Dynamin 2-Mediated Entry Pathway for Infection of Human Keratinocytes , 2007, Journal of Virology.

[12]  P. Choyke,et al.  Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan , 2007, Nature Medicine.

[13]  V. Laniosz,et al.  Bovine Papillomavirus Type 1 Infection Is Mediated by SNARE Syntaxin 18 , 2007, Journal of Virology.

[14]  R. Kehlenbach,et al.  CRM1-mediated nuclear export: to the pore and beyond. , 2007, Trends in cell biology.

[15]  J. Bordeaux,et al.  The L2 Minor Capsid Protein of Low-Risk Human Papillomavirus Type 11 Interacts with Host Nuclear Import Receptors and Viral DNA , 2006, Journal of Virology.

[16]  J. Bordeaux,et al.  Nuclear import strategies of high-risk HPV18 L2 minor capsid protein. , 2006, Virology.

[17]  Luise Florin,et al.  Identification of a Dynein Interacting Domain in the Papillomavirus Minor Capsid Protein L2 , 2006, Journal of Virology.

[18]  D. Lowy,et al.  Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Schiller,et al.  A Membrane-Destabilizing Peptide in Capsid Protein L2 Is Required for Egress of Papillomavirus Genomes from Endosomes , 2006, Journal of Virology.

[20]  M. Ozbun,et al.  The Minor Capsid Protein L2 Contributes to Two Steps in the Human Papillomavirus Type 31 Life Cycle , 2005, Journal of Virology.

[21]  R. Roden,et al.  The Positively Charged Termini of L2 Minor Capsid Protein Required for Bovine Papillomavirus Infection Function Separately in Nuclear Import and DNA Binding , 2004, Journal of Virology.

[22]  J. Moroianu,et al.  The L2 Minor Capsid Protein of Human Papillomavirus Type 16 Interacts with a Network of Nuclear Import Receptors , 2004, Journal of Virology.

[23]  U. Vinkemeier,et al.  Ratjadone and leptomycin B block CRM1‐dependent nuclear export by identical mechanisms , 2004, FEBS letters.

[24]  D. Lowy,et al.  Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Michelle S. Longworth,et al.  Pathogenesis of Human Papillomaviruses in Differentiating Epithelia , 2004, Microbiology and Molecular Biology Reviews.

[26]  D. Lowy,et al.  Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. , 2004, Virology.

[27]  Luise Florin,et al.  Dissection of human papillomavirus type 33 L2 domains involved in nuclear domains (ND) 10 homing and reorganization. , 2003, Virology.

[28]  R. Roden,et al.  Interaction of L2 with β-Actin Directs Intracellular Transport of Papillomavirus and Infection* , 2003, The Journal of Biological Chemistry.

[29]  D. Lowy,et al.  Papillomaviruses infect cells via a clathrin-dependent pathway. , 2003, Virology.

[30]  T. Hofmann,et al.  Interaction of human papillomavirus type 16 L2 with cellular proteins: identification of novel nuclear body-associated proteins. , 2002, Virology.

[31]  Luise Florin,et al.  Assembly and Translocation of Papillomavirus Capsid Proteins , 2002, Journal of Virology.

[32]  D. Lowy,et al.  Positively Charged Termini of the L2 Minor Capsid Protein Are Necessary for Papillomavirus Infection , 2001, Journal of Virology.

[33]  I. Frazer,et al.  Sequences required for the nuclear targeting and accumulation of human papillomavirus type 6B L2 protein. , 1995, Virology.