A three-dimensional parametric mesher with surface boundary-layer capability

Abstract A novel parametric surface meshing technique is presented. Its distinctive feature relies on successive approximations of the CAD geometry through a hierarchical process where geometric information is gathered incrementally. A detailed review of zero- and first-order surface approximations and their impact on parametric surface meshing algorithms is performed. The proposed approach emphasizes the use of three-dimensional information in order to be as independent as possible of the parametrization to overcome limitations of meshing purely in the parametric plane. The presented technique includes semi-structured boundary-layer surface mesh generation which is a critical capability for accurate solutions to flows around geometries that have leading edge features. Numerous examples illustrate the method's robustness and ability to high-quality meshes for complex CAD geometries.

[1]  Rainald Löhner,et al.  On the 'most normal' normal , 2007 .

[2]  Houman Borouchaki,et al.  Simplification of composite parametric surface meshes , 2004, Engineering with Computers.

[3]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[4]  Paul-Louis George,et al.  Maillage de surfaces paramtriques. Partie I : Aspects thoriques , 1997 .

[5]  Marshal L. Merriam,et al.  An efficient advancing front algorithm for Delaunay triangulation , 1991 .

[6]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[7]  Kazuhiro Nakahashi,et al.  Unstructured Mesh Generation For Viscous Flow Computations , 2002, IMR.

[8]  Charles L. Lawson,et al.  Transforming triangulations , 1972, Discret. Math..

[9]  Patrick Laug,et al.  Some aspects of parametric surface meshing , 2010 .

[10]  Rainald Löhner,et al.  Linear Sources for Mesh Generation , 2013, SIAM J. Sci. Comput..

[11]  Rainald Löhner,et al.  Three-dimensional grid generation by the advancing front method , 1988 .

[12]  R. Löhner,et al.  Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods , 2001 .

[13]  Rainald Löhner,et al.  An advancing front point generation technique , 1998 .

[14]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[15]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[16]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[17]  Steven J. Owen,et al.  Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition , 1998, IMR.

[18]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[19]  Petr Krysl,et al.  Triangulation of 3D surfaces , 1997, Engineering with Computers.

[20]  P. George,et al.  Parametric surface meshing using a combined advancing-front generalized Delaunay approach , 2000 .

[21]  Guillaume Houzeaux,et al.  A surface remeshing approach , 2010 .

[22]  E. Oñate,et al.  Assessment of a Lagrangian Incompressible Flow Code , 2007 .

[23]  Alan M. Shih,et al.  Efficient Hybrid Surface and Volume Mesh Generation for Viscous Flow Simulations , 2011 .

[24]  Nigel P. Weatherill,et al.  Automatic Unstructured Surface Mesh Generation for Complex Configurations , 2004 .

[25]  Shahyar Pirzadeh,et al.  Viscous unstructured three-dimensional grids by the advancing-layers method , 1994 .

[26]  Yuanxian Gu,et al.  An extended advancing front technique for closed surfaces mesh generation , 2008 .

[27]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[28]  S. Connell,et al.  Semistructured mesh generation for three-dimensional Navier-Stokes calculations , 1995 .

[29]  Adrien Loseille,et al.  On 3D Anisotropic Local Remeshing for Surface, Volume and Boundary Layers , 2009, IMR.

[30]  R. Löhner,et al.  Generation of viscous grids at ridges and corners , 2009 .

[31]  W. Kühnel Differential Geometry: Curves - Surfaces - Manifolds , 2002 .

[32]  Hongyuan Zha,et al.  Consistent computation of first- and second-order differential quantities for surface meshes , 2008, SPM '08.

[33]  Saikat Dey,et al.  Singularities in Parametric Meshing , 2012, IMR.

[34]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[35]  J. Carrera,et al.  Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media , 1996 .

[36]  N. Weatherill,et al.  Unstructured grid generation using iterative point insertion and local reconnection , 1995 .

[37]  Jean-Christophe Cuillière An adaptive method for the automatic triangulation of 3D parametric surfaces , 1998, Comput. Aided Des..

[38]  Chi King Lee,et al.  Automatic metric advancing front triangulation over curved surfaces , 2000 .

[39]  Robert Haimes,et al.  Watertight Anisotropic Surface Meshing Using Quadrilateral Patches , 2004, IMR.

[40]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .