Numerically Robust State Estimators

This chapter discusses the numerical condition of the weighted least-squares state estimation problem and reviews the main techniques developed to enhance numerical robustness (Numerical robustness is not to be confused with robust estimators, or Huber estimators, discussed in Chap. 9.)

[1]  Felix F. Wu,et al.  Comparison of different methods for state estimation , 1988 .

[2]  A. Simoes-Costa,et al.  Bad Data Detection and Identification Techniques Using Estimation Orthogonal Methods , 1982, IEEE Transactions on Power Apparatus and Systems.

[3]  Felix F. Wu,et al.  A Hybrid State Estimator: Solving Normal Equations by Orthogonal Transformations , 1985, IEEE Power Engineering Review.

[4]  Felix F. Wu,et al.  Observability Analysis for Orthogonal Transformation Based State Estimation , 1986, IEEE Transactions on Power Systems.

[5]  G. R. Krumpholz,et al.  The Solution of Ill-Conditioned Power System State Estimation Problems Via the Method of Peters and Wilkinson , 1983, IEEE Transactions on Power Apparatus and Systems.

[6]  V. Quintana,et al.  A Robust Numerical Technique for Power System State Estimation , 1981, IEEE Transactions on Power Apparatus and Systems.

[7]  Gary D. Hachtel THE SPARSE TABLEAU APPROACH TO FINITE ELEMENT ASSEMBLY , 1976 .

[8]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[9]  R. V. Amerongen,et al.  On the exact incorporation of virtual measurements on orthogonal-transformation based state-estimation procedures , 1991 .

[10]  I. Duff,et al.  A Comparison of Some Methods for the Solution of Sparse Overdetermined Systems of Linear Equations , 1976 .

[11]  M. Gilles,et al.  A blocked sparse matrix formulation for the solution of equality-constrained state estimation , 1991, IEEE Power Engineering Review.

[12]  W. F. Tinney,et al.  Enhancement to Givens rotations for power system state estimation , 1991 .

[13]  V. Quintana,et al.  An Orthogonal Row Processing Algorithm for Power System Sequential State Estimation , 1981, IEEE Transactions on Power Apparatus and Systems.

[14]  W. Tinney,et al.  State estimation using augmented blocked matrices , 1990 .

[15]  P. Machado,et al.  A Mixed Pivoting Approach to the Factorization of Indefinite Matrices in Power System State Estimation , 1991, IEEE Power Engineering Review.

[16]  L. Holten,et al.  Hachtel's Augmented Matrix Method - A Rapid Method Improving Numerical Stability in Power System Static State Estimation , 1985, IEEE Transactions on Power Apparatus and Systems.

[17]  W. F. Tinney,et al.  Orthogonal sparse vector methods , 1992 .

[18]  M. Gilles,et al.  Observability and bad data analysis using augmented blocked matrices (power system analysis computing) , 1993 .

[19]  Felix F. Wu,et al.  Observability analysis and bad data processing for state estimation with equality constraints , 1988 .

[20]  Åke Björck,et al.  Stability analysis of the method of seminormal equations for linear least squares problems , 1987 .