Static output feedback control of networked control systems with packet dropout

This article deals with the problem of mean square stability of discrete-time networked control systems (NCSs) over a communication channel subject to packet dropout. By introducing a parameter-independent slack variable with lower triangular structure, the existence of a static output feedback controller is formulated in the form of linear matrix inequalities. Neither equality constraint nor iterative algorithm is involved through the derivation of the controller. Furthermore, a new algorithm is proposed to obtain the admissible packet dropout probability bound for the given controller gain. This is particularly important in the co-design of controller and scheduling for NCSs. The simplicity of the methods is demonstrated by numerical examples.

[1]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[2]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[3]  Frank L. Lewis,et al.  Output feedback eigenstructure assignment using two Sylvester equations , 1993, IEEE Trans. Autom. Control..

[4]  Germain Garcia,et al.  Stabilization of discrete time linear systems by static output feedback , 2001, IEEE Trans. Autom. Control..

[5]  R. Skelton,et al.  Linear quadratic suboptimal control with static output feedback , 1994 .

[6]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[7]  Wei-Yong Yan,et al.  Stability robustness of networked control systems with respect to packet loss , 2007, Autom..

[8]  Bruno Sinopoli,et al.  Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.

[9]  Huazhen Fang,et al.  Kalman filter-based identification for systems with randomly missing measurements in a network environment , 2010, Int. J. Control.

[10]  Peter Seiler,et al.  Estimation with lossy measurements: jump estimators for jump systems , 2003, IEEE Trans. Autom. Control..

[11]  Chaouki T. Abdallah,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[12]  Robert E. Skelton,et al.  Static output feedback controllers: stability and convexity , 1998, IEEE Trans. Autom. Control..

[13]  Wei Zhang,et al.  Stability of networked control systems , 2001 .

[14]  Sérgio Ricardo de Souza,et al.  Output Feedback Stabilization of Uncertain Systems through a Min/Max Problem* , 1993 .

[15]  Guang-Hong Yang,et al.  Static Output Feedback Control Synthesis for Linear Systems With Time-Invariant Parametric Uncertainties , 2007, IEEE Transactions on Automatic Control.

[16]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[17]  Huazhen Fang,et al.  Kalman filter‐based adaptive control for networked systems with unknown parameters and randomly missing outputs , 2009 .

[18]  A. Nazli Gündes,et al.  A general boundedness result for interconnected nonlinear systems , 1998, IEEE Trans. Autom. Control..

[19]  J.P. Hespanha,et al.  Estimation under uncontrolled and controlled communications in Networked Control Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  P. Varaiya,et al.  Control under communication constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[21]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[22]  Yang Shi,et al.  Output Feedback Stabilization of Networked Control Systems With Random Delays Modeled by Markov Chains , 2009, IEEE Transactions on Automatic Control.

[23]  Dong Yue,et al.  STATE FEEDBACK CONTROLLER DESIGN OF NETWORKED CONTROL SYSTEMS WITH PARAMETER UNCERTAINTY AND STATE‐DELAY , 2006 .

[24]  Uri Shaked,et al.  An LPD approach to robust H2 and H∞ static output-feedback design , 2003, IEEE Trans. Autom. Control..

[25]  Dong Yue,et al.  State feedback controller design of networked control systems , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[26]  Dongmei Zhang,et al.  Equivalence of some stability criteria for linear time-delay systems , 2008, Appl. Math. Comput..

[27]  A. T. Neto,et al.  Stabilization via static output feedback , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[28]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[29]  IwasakiT.,et al.  All controllers for the general H control problem , 1994 .