Early solar mass loss: A potential solution to the weak sun paradox

The weak sun paradox, in which early planetary temperatures are known to have remained above the freezing point of water despite presumably lower early solar luminosity, has customarily been resolved by imposing high early CO2 atmospheric abundances. Speculative new solar models incorporating early solar mass loss provide a possible solution to the case of ‘missing’ solar lithium; at the same time, they predict higher early (4.5–3.8 Gyr BP) solar luminosities. These higher luminosities have the potential to produce planetary temperatures within the liquid water range indicated by observations without requiring extremely high CO2 concentrations.

[1]  J. Faulkner,et al.  Lithium dilution through main-sequence mass loss , 1992 .

[2]  M. Pinsonneault,et al.  Standard solar model , 1992 .

[3]  J. Kasting,et al.  CO2 condensation and the climate of early Mars. , 1991, Icarus.

[4]  W. Fowler,et al.  Our sun. II - Early mass loss of 0.1 solar mass and the case of the missing lithium , 1991 .

[5]  P. Charbonneau,et al.  The lithium abundance in stars , 1991 .

[6]  William A. Fowler,et al.  Our sun. I. The standard model: Successes and failures , 1990 .

[7]  P. Charbonneau,et al.  Lithium abundance in cluster giants: constraints on meridional circulation transport on the main sequence , 1989 .

[8]  S. Bowring,et al.  3.96 Ga gneisses from the Slave province, Northwest Territories, Canada , 1989 .

[9]  C. Proffitt,et al.  Pre-main-sequence depletion of Li-6 and Li-7 , 1989 .

[10]  D. VandenBerg,et al.  On Precise ZAMSs, the Solar Color, and Pre-Main-Sequence Lithium Depletion , 1989 .

[11]  H. Marshall,et al.  The effect on Earth's surface temperature from variations in rotation rate, continent formation, solar luminosity, and carbon dioxide. , 1989, Journal of geophysical research.

[12]  T. Brown,et al.  Inferring the sun's internal angular velocity from observed p-mode frequency splittings , 1989 .

[13]  F. Bruhweiler,et al.  Evidence for a cool wind from the K2 dwarf in the detached binary V471 Tauri , 1989 .

[14]  M. Pinsonneault,et al.  Evolutionary models of the rotating sun , 1989 .

[15]  S. Vauclair Lithium Nuclear Destruction in Stellar Outer Layers: A Consistent Theoretical View of the Characteristic Features Observed in Young and Old Stars , 1988 .

[16]  S. Woosley Supernova 1987A: Two Years After , 1988 .

[17]  J. Kasting,et al.  Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. , 1988, Icarus.

[18]  John N. Bahcall,et al.  Solar models, neutrino experiments, and helioseismology , 1988 .

[19]  W. M. Brunish,et al.  Comparison between mass-losing and standard solar models , 1987 .

[20]  G. H. Bowen,et al.  Mass loss on the main sequence , 1987 .

[21]  S. Epstein,et al.  The implication of the oxygen isotope records in coexisting cherts and phosphates , 1986 .

[22]  B. Lazar,et al.  Evolution of the atmosphere and oceans , 1986, Nature.

[23]  Luis Carrasco,et al.  Rotational braking of late type main sequence stars , 1986 .

[24]  G. Michaud Particle transport in solar type stars , 1985 .

[25]  G. H. Bowen,et al.  Effects of pulsation and mass loss on stellar evolution , 1984, Nature.

[26]  A. Henderson‐sellers,et al.  The Origin and Earliest State of the Earth's Hydrosphere (Paper 4R0142) , 1984 .

[27]  V. Canuto,et al.  The young Sun and the atmosphere and photochemistry of the early Earth , 1983, Nature.

[28]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[29]  R. Weymann,et al.  THE DEPTH OF THE CONVECTIVE ENVELOPE ON THE LOWER MAIN SEQUENCE AND THE DEPLETION OF LITHIUM , 1965 .

[30]  P. Judge,et al.  Mass loss upper limits for A and F dwarfs , 1990 .

[31]  J. Kasting Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. , 1987, Precambrian research.

[32]  M. H. Hart,et al.  The evolution of the atmosphere of the earth , 1978 .