Set membership state and parameter estimation for systems described by nonlinear differential equations

This paper investigates the use of guaranteed methods to perform state and parameter estimation for nonlinear continuous-time systems, in a bounded-error context. A state estimator based on a prediction-correction approach is given, where the prediction step consists in a validated integration of an initial value problem for an ordinary differential equation (IVP for ODE) using interval analysis and high-order Taylor models, while the correction step uses a set inversion technique. The state estimator is extended to solve the parameter estimation problem. An illustrative example is presented for each part.

[1]  Luc Jaulin,et al.  Nonlinear bounded-error state estimation of continuous-time systems , 2002, Autom..

[2]  Martin Berz,et al.  Verified integration of dynamics in the solar system , 2001 .

[3]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[4]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[5]  John D. Pryce,et al.  An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..

[6]  Boris Polyak,et al.  Multi-Input Multi-Output Ellipsoidal State Bounding , 2001 .

[7]  A. Neumaier Interval methods for systems of equations , 1990 .

[8]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[9]  John Norton,et al.  Computationally efficient algorithms for state estimation with ellipsoidal approximations , 2002 .

[10]  V. Becerra,et al.  Applying the extended Kalman filter to systems described by nonlinear differential-algebraic equations , 2001 .

[11]  Eric Walter,et al.  Set inversion via interval analysis for nonlinear bounded-error estimation , 1993, Autom..

[12]  R. Rihm,et al.  On a class of enclosure methods for initial value problems , 1994, Computing.

[13]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[14]  N. Nedialkov,et al.  Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .

[15]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[16]  Eric Walter,et al.  Guaranteed recursive non‐linear state bounding using interval analysis , 2002 .