Physiology of the thermophilic acetogen Moorella thermoacetica.

Moorella thermoacetica (originally isolated as Clostridium thermoaceticum) has served as the primary acetogenic bacterium for the resolution of the acetyl coenzyme A (acetyl-CoA) or Wood-Ljungdahl pathway, a metabolic pathway that (i) autotrophically assimilates CO2 and (ii) is centrally important to the turnover of carbon in many habitats. The purpose of this article is to highlight the diverse physiological features of this model acetogen and to examine some of the consequences of its metabolic capabilities.

[1]  R. Devereux,et al.  Physiological Ecology of Clostridium glycolicum RD-1, an Aerotolerant Acetogen Isolated from Sea Grass Roots , 2001, Applied and Environmental Microbiology.

[2]  H. Drake,et al.  Dissimilation of Carbon Monoxide to Acetic Acid by Glucose-Limited Cultures of Clostridium thermoaceticum , 1985, Applied and environmental microbiology.

[3]  H. Drake,et al.  Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum , 1988, Journal of bacteriology.

[4]  H. Drake,et al.  Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils. , 2002, FEMS microbiology ecology.

[5]  E. Stackebrandt,et al.  Thermicanus aegyptius gen. nov., sp. nov., Isolated from Oxic Soil, a Fermentative Microaerophile That Grows Commensally with the Thermophilic Acetogen Moorella thermoacetica , 1999, Applied and Environmental Microbiology.

[6]  R. Thauer CO2‐reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO2 in Clostridium thermoaceticum , 1972 .

[7]  G. Fuchs Variations of the Acetyl-CoA Pathway in Diversely Related Microorganisms That Are Not Acetogens , 1994 .

[8]  H. Drake,et al.  Fumarate dissimilation and differential reductant flow by Clostridium formicoaceticum and Clostridium aceticum , 1993, Archives of Microbiology.

[9]  S. Braus-Stromeyer,et al.  Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? , 1997, BioFactors.

[10]  L. Ljungdahl,et al.  The Acetyl-CoA Pathway and the Chemiosmotic Generation of ATP during Acetogenesis , 1994 .

[11]  T. Parkin,et al.  Direct measurement of oxygen profiles and denitrification rates in soil aggregates , 1985 .

[12]  P. Loubière,et al.  Use of unicarbon substrate mixtures to modify carbon flux improves vitamin B12 production with the acetogenic methylotrophEubacterium limosum , 1994, Biotechnology Letters.

[13]  H. Drake Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum , 1982, Journal of bacteriology.

[14]  K. Sakka,et al.  A Novel Cellulolytic, Anaerobic, and Thermophilic Bacterium, Moorella sp. Strain F21 , 2003, Bioscience, biotechnology, and biochemistry.

[15]  R. Conrad,et al.  Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils , 1995, Applied and environmental microbiology.

[16]  D. P. Cunningham,et al.  Precipitation of cadmium by Clostridium thermoaceticum , 1993, Applied and environmental microbiology.

[17]  S. Ragsdale,et al.  Anaerobic pathway for conversion of the methyl group of aromatic methyl ethers to acetic acid by Clostridium thermoaceticum. , 1994, Biochemistry.

[18]  L. Ljungdahl,et al.  Composition and primary structure of the F1F0 ATP synthase from the obligately anaerobic bacterium Clostridium thermoaceticum , 1997, Journal of bacteriology.

[19]  P. Lawson,et al.  The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. , 1994, International journal of systematic bacteriology.

[20]  R. Kellum,et al.  Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum , 1984, Journal of bacteriology.

[21]  H. Boga,et al.  Hydrogen-Dependent Oxygen Reduction by Homoacetogenic Bacteria Isolated from Termite Guts , 2003, Applied and Environmental Microbiology.

[22]  L. Ljungdahl,et al.  A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity. , 2003, Biochemistry.

[23]  A. Brune,et al.  Termites. Ph Gradients in Guts of Lower and Higher Microelectrode Determination of Oxygen And , 1995 .

[24]  H. Drake,et al.  Effects of environmental parameters on the formation and turnover of acetate by forest soils , 1995, Applied and environmental microbiology.

[25]  H. Drake,et al.  Acetogenic capacities and the anaerobic turnover of carbon in a kansas prairie soil , 1996, Applied and environmental microbiology.

[26]  Douglas R Martin,et al.  Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacteriumClostridium thermoaceticum , 1983, Current Microbiology.

[27]  J. R. Phillips,et al.  Synthesis gas as substrate for the biological production of fuels and chemicals , 1994 .

[28]  G. Diekert,et al.  Anaerobic transformation of 2,4,6-trinitrotoluene (TNT) , 2004, Archives of Microbiology.

[29]  H. Drake Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljungdahl” Pathway: Past and Current Perspectives , 1994 .

[30]  S. Ragsdale,et al.  The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won , 1997, BioFactors.

[31]  G. Ritter,et al.  A New Type of Glucose Fermentation by Clostridium thermoaceticum , 1942, Journal of bacteriology.

[32]  L. Ljungdahl,et al.  Electron-Transport System in Acetogens , 2003 .

[33]  S. Ragsdale Nickel containing CO dehydrogenases and hydrogenases. , 2000, Sub-cellular biochemistry.

[34]  R. Tanner,et al.  Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. , 1993, International journal of systematic bacteriology.

[35]  H. Drake,et al.  Sporomusa silvacetica sp, nov., an acetogenic bacterium isolated from aggregated forest soil. , 1997, International journal of systematic bacteriology.

[36]  H. Drake,et al.  Development of a minimally defined medium for the acetogen Clostridium thermoaceticum , 1984, Journal of bacteriology.

[37]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[38]  M. Cheryan,et al.  Production of acetic acid by Clostridium thermoaceticum. , 1997, Advances in applied microbiology.

[39]  S. Ragsdale Life with Carbon Monoxide , 2004, Critical reviews in biochemistry and molecular biology.

[40]  H. Drake,et al.  Oxalate- and Glyoxylate-Dependent Growth and Acetogenesis by Clostridium thermoaceticum , 1993, Applied and environmental microbiology.

[41]  Eva R. Kashket,et al.  Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum , 1984, Applied and environmental microbiology.

[42]  H. A. Barker,et al.  Carbon Dioxide Utilization in the Synthesis of Acetic Acid by Clostridium Thermoaceticum. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Harold L. Drake,et al.  Tolerance and Metabolic Response of Acetogenic Bacteria toward Oxygen , 2002, Applied and Environmental Microbiology.

[44]  H. Drake,et al.  Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions , 1990, Journal of bacteriology.

[45]  G. Gottschalk,et al.  The Sodium Ion Cycle in Acetogenic and Methanogenic Bacteria: Generation and Utilization of a Primary Electrochemical Sodium Ion Gradient , 1994 .

[46]  T. Leisinger,et al.  Transformation of Tetrachloromethane to Dichloromethane and Carbon Dioxide by Acetobacterium woodii , 1989, Applied and environmental microbiology.

[47]  L. Lebioda,et al.  The Crystal Structure ofN10-Formyltetrahydrofolate Synthetase fromMoorella thermoacetica†,‡ , 2000 .

[48]  M. Kamen Early history of carbon-14. , 1963, Science.

[49]  S. Ragsdale,et al.  Characterization of a Three-Component Vanillate O-Demethylase from Moorella thermoacetica , 2001, Journal of bacteriology.

[50]  H. Drake,et al.  Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum , 1990, Journal of bacteriology.

[51]  J. Wiegel,et al.  Comparison of three thermophilic acetogenic bacteria for production of calcium-magnesium acetate , 1986 .

[52]  J. Hugenholtz,et al.  Acetogenic and Acid-Producing Clostridia , 1989 .

[53]  H. Drake Acetogenesis and acetogenic bacteria , 1994 .

[54]  Peter Dürre,et al.  Handbook on Clostridia , 2005 .

[55]  G. Diekert,et al.  Metabolism of homoacetogens , 2004, Antonie van Leeuwenhoek.

[56]  S. Ragsdale CO Dehydrogenase and the Central Role of This Enzyme in the Fixation of Carbon Dioxide by Anaerobic Bacteria , 1994 .

[57]  F. Keller,et al.  Isolation of a Strain of Clostridium thermoaceticum Capable of Growth and Acetic Acid Production at pH 4.5 , 1982, Applied and environmental microbiology.

[58]  S. Ragsdale Pyruvate ferredoxin oxidoreductase and its radical intermediate. , 2003, Chemical reviews.

[59]  P. Schönheit,et al.  Sodium dependent acetate formation from CO2 in Peptostreptococcus products (strain Marburg). , 1989, FEMS microbiology letters.

[60]  H. Drake,et al.  Nitrate-Dependent Regulation of Acetate Biosynthesis and Nitrate Respiration by Clostridium thermoaceticum , 1999 .

[61]  Paul A. Lindahl,et al.  Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open α subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase , 2003, Nature Structural Biology.

[62]  P. Lindahl,et al.  The Evolution of Acetyl-CoA Synthase , 2001, Origins of life and evolution of the biosphere.

[63]  A. Brune,et al.  Hydrogen Concentration Profiles at the Oxic-Anoxic Interface: a Microsensor Study of the Hindgut of the Wood-Feeding Lower Termite Reticulitermes flavipes (Kollar) , 1997, Applied and environmental microbiology.

[64]  H. Drake,et al.  Growth of thermophilic acetogenic bacteria on methoxylated aromatic acids , 1988 .

[65]  V. Müller,et al.  Differential effects of sodium ions on motility in the homoacetogenic bacteriaAcetobacterium woodii andSporomusa sphaeroides , 1995, Archives of Microbiology.

[66]  L. Ljungdahl,et al.  Fermentation of Glucose, Fructose, and Xylose by Clostridium thermoaceticum: Effect of Metals on Growth Yield, Enzymes, and the Synthesis of Acetate from CO2 , 1973, Journal of bacteriology.

[67]  J. Hugenholtz,et al.  Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum , 1989, Journal of bacteriology.

[68]  H. Drake,et al.  Oxalate metabolism by the acetogenic bacterium Moorella thermoacetica. , 2004, FEMS microbiology letters.

[69]  B. Schink Diversity, Ecology, and Isolation of Acetogenic Bacteria , 1994 .

[70]  P. Lawson,et al.  Formate-Dependent Growth and Homoacetogenic Fermentation by a Bacterium from Human Feces: Description of Bryantella formatexigens gen. nov., sp. nov , 2003, Applied and Environmental Microbiology.

[71]  H. Drake,et al.  Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest , 1999 .

[72]  J. Terracciano,et al.  Membrane H+ Conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for Electrogenic Na+/H+ Antiport in Clostridium thermoaceticum , 1987, Applied and environmental microbiology.

[73]  H. Drake,et al.  Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui , 1990, Journal of bacteriology.

[74]  Henry Naveau,et al.  Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide , 1994, Archives of Microbiology.

[75]  A. Grethlein,et al.  Bioprocessing of coal-derived synthesis gases by anaerobic bacteria , 1992 .

[76]  H. Simon,et al.  Electromicrobial regeneration of pyridine nucleotides and other preparative redox transformations with Clostridium thermoaceticum , 1995, Applied Microbiology and Biotechnology.

[77]  C. R. Lovell,et al.  Site-directed mutagenesis of a potential catalytic and formyl phosphate binding site and substrate inhibition of N10-formyltetrahydrofolate synthetase. , 2002, Archives of biochemistry and biophysics.

[78]  V. Müller,et al.  Energy Conservation in Acetogenic Bacteria , 2003, Applied and Environmental Microbiology.

[79]  G. Bennett,et al.  2,4,6-Trinitrotoluene Reduction by Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum , 2000, Applied and Environmental Microbiology.

[80]  R. Conrad,et al.  Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils , 1996 .

[81]  H. Drake,et al.  Comparative assessment of inorganic pyrophosphate and pyrophosphatase levels of Escherichia coli, Clostridium pasteurianum, and Clostridium thermoaceticum , 1988 .

[82]  D. I. Wang,et al.  Production of acetic acid by immobilized whole cells ofClostridium thermoaceticum , 1983, Applied biochemistry and biotechnology.

[83]  R. Busche Extractive fermentation of acetic acid , 1991 .

[84]  L. Barton,et al.  Biochemistry and Physiology of Anaerobic Bacteria , 2003, Springer New York.

[85]  G. Diekert,et al.  Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium , 1991, Archives of Microbiology.

[86]  H. Drake,et al.  Differential effects of sodium on hydrogen- and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui , 1990, Applied and environmental microbiology.

[87]  L. Ljungdahl,et al.  Five-Gene Cluster in Clostridium thermoaceticumConsisting of Two Divergent Operons Encoding Rubredoxin Oxidoreductase- Rubredoxin and Rubrerythrin–Type A Flavoprotein– High-Molecular-Weight Rubredoxin , 2001, Journal of bacteriology.

[88]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[89]  W. Ludwig,et al.  Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite. , 2003, International journal of systematic and evolutionary microbiology.

[90]  T. Oh-hama,et al.  5‐Aminolevulinic acid formation from glutamate via the C5 pathway in Clostridium thermoaceticum , 1988, FEBS letters.

[91]  M. Talabardon,et al.  Anaerobic thermophilic fermentation for acetic acid production from milk permeate. , 2000, Journal of biotechnology.

[92]  N. Nishio,et al.  Production of extracellular 5-aminolevulinic acid byClostridium thermoaceticum grown in minimal medium , 1989, Biotechnology Letters.

[93]  H. Drake,et al.  Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the co-dependent O-demethylating activity. , 1991, Biochemical and biophysical research communications.

[94]  H. Drake,et al.  Influence of nitrate on oxalate- and glyoxylate-dependent growth and acetogenesis by Moorella thermoacetica , 2002, Archives of Microbiology.

[95]  J. Zeikus,et al.  Growth of Clostridium thermoaceticum on H2/CO 2 as Energy Source , 1983 .

[96]  Anaerobic processes in soil , 1984 .

[97]  H. Drake,et al.  Glycolate as a metabolic substrate for the acetogen Moorella thermoacetica , 1999 .

[98]  L. Ljungdahl The autotrophic pathway of acetate synthesis in acetogenic bacteria. , 1986, Annual review of microbiology.

[99]  H. Drake,et al.  Nitrite as an Energy-Conserving Electron Sink for the Acetogenic Bacterium Moorella thermoacetica , 2003, Current Microbiology.

[100]  M. Savage,et al.  Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum , 1987, Applied and environmental microbiology.

[101]  G. Gottschalk,et al.  Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii , 1989, Journal of bacteriology.

[102]  T. Oh-hama,et al.  Characterization of the process of 5-aminolevulinic acid formation from glutamate via the C5 pathway in Clostridium thermoaceticum. , 1991, The International journal of biochemistry.

[103]  G. Braus,et al.  Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria , 1997, Journal of bacteriology.

[104]  L. Lebioda,et al.  The crystal structure of N(10)-formyltetrahydrofolate synthetase from Moorella thermoacetica. , 2001, Biochemistry.

[105]  H. Drake,et al.  Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum , 1993, Journal of bacteriology.

[106]  P. Lindahl The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? , 2002, Biochemistry.

[107]  I. S. Goldstein,et al.  Organic Chemicals From Biomass , 1981 .

[108]  V. Müller,et al.  Molecular and cellular biology of acetogenic bacteria , 2004 .

[109]  J. Wiegel Acetate and the Potential of Homoacetogenic Bacteria for Industrial Applications , 1994 .

[110]  N. Nishio,et al.  Effects of Trace Metal Ions on the Growth, Homoacetogenesis and Corrinoid Production by Clostridium thermoaceticum , 1991 .

[111]  G. Gottschalk,et al.  Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum , 2004, Archiv für Mikrobiologie.

[112]  H. Drake,et al.  Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum , 1996, Journal of bacteriology.

[113]  Wood Hg Fermentation of 3, 4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum. , 1952 .

[114]  G. Fuchs CO2 fixation in acetogenic bacteria: Variations on a theme , 1986 .

[115]  R. Conrad,et al.  Efficiency of hydrogen utilization during unitrophic and mixotrophic growth of Acetobacterium woodii on hydrogen and lactate in the chemostat , 1998 .

[116]  Harold L. Drake,et al.  How the Diverse Physiologic Potentials of Acetogens Determine Their In Situ Realities , 2003 .

[117]  F. Rainey,et al.  Novel strains of Moorella thermoacetica form unusually heat-resistant spores , 2000, Archives of Microbiology.

[118]  N. Nishio,et al.  Enzymatic reduction of cystine into cysteine by cell-free extract of Clostridium thermoaceticum , 1991 .

[119]  M. Cheryan,et al.  Improvement of productivity in acetic acid fermentation withClostridium thermoaceticum , 1995 .

[120]  L. Barton,et al.  Variations in autotrophic life , 1991 .

[121]  J. Suflita,et al.  H2-CO2-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium , 1993, Applied and environmental microbiology.

[122]  S. Ragsdale,et al.  Enzymology of the acetyl-CoA pathway of CO2 fixation. , 1991, Critical reviews in biochemistry and molecular biology.