On the enumeration of plane bipolar posets and transversal structures

We show that plane bipolar posets (i.e., plane bipolar orientations with no transitive edge) and transversal structures can be set in correspondence to certain (weighted) models of quadrant walks, via suitable specializations of a bijection due to Kenyon, Miller, Sheffield and Wilson. We then derive exact and asymptotic counting results, and in particular we prove (computationally and then bijectively) that the number of plane bipolar posets on n + 2 vertices equals the number of plane permutations (i.e., avoiding the vincular pattern 2 14 3) of size n, and that the number tn of transversal structures on n + 2 vertices satisfies (for some c > 0) the asymptotic estimate tn ∼ c (27/2)nn−1−π/arccos(7/8), which also ensures that the associated generating function is not D-finite.

[1]  Éric Fusy,et al.  Transversal structures on triangulations: A combinatorial study and straight-line drawings , 2006, Discret. Math..

[2]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[3]  Andrew Elvey Price,et al.  The generating function of planar Eulerian orientations , 2018, J. Comb. Theory, Ser. A.

[4]  Mathilde Bouvel,et al.  Semi-Baxter and Strong-Baxter: Two Relatives of the Baxter Sequence , 2018, SIAM J. Discret. Math..

[5]  Mireille Bousquet-Mélou,et al.  Forest-Like Permutations , 2006, math/0603617.

[6]  Stefan Felsner,et al.  Asymptotic enumeration of orientations , 2010, Discret. Math. Theor. Comput. Sci..

[7]  Scaling and local limits of Baxter permutations and bipolar orientations through coalescent-walk processes , 2020, 2008.09086.

[8]  Mireille Bousquet-Mélou,et al.  Counting planar maps, coloured or uncoloured , 2011, 2004.08792.

[9]  B. Ruijl,et al.  Locally causal dynamical triangulations in two dimensions , 2015, 1507.04566.

[10]  Stefan Felsner,et al.  Lattice Structures from Planar Graphs , 2004, Electron. J. Comb..

[11]  David Eppstein,et al.  Regular labelings and geometric structures , 2010, CCCG.

[12]  Nathan Reading,et al.  Generic rectangulations , 2011, Eur. J. Comb..

[13]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[14]  Éric Fusy,et al.  New bijective links on planar maps via orientations , 2008, Eur. J. Comb..

[15]  D. Wilson,et al.  Bipolar orientations on planar maps and SLE$_{12}$ , 2015, 1511.04068.

[16]  Toshihiko Takahashi,et al.  A (4n - 4)-Bit Representation of a Rectangular Drawing or Floorplan , 2009, COCOON.

[17]  Stefan Felsner,et al.  Convex Drawings of 3-Connected Plane Graphs , 2005, SODA '05.

[18]  Nicolas Bonichon,et al.  Baxter permutations and plane bipolar orientations , 2008, Electron. Notes Discret. Math..

[19]  Nicolas Bonichon,et al.  Intervals in Catalan lattices and realizers of triangulations , 2009, J. Comb. Theory, Ser. A.

[20]  Alin Bostan,et al.  Non-D-finite excursions in the quarter plane , 2012, J. Comb. Theory A.

[21]  K. Raschel,et al.  Plane bipolar orientations and quadrant walks. , 2019, 1905.04256.

[22]  Denis Denisov,et al.  Random walks in cones , 2015 .

[23]  Goos Kant,et al.  Regular Edge Labeling of 4-Connected Plane Graphs and Its Applications in Graph Drawing Problems , 1997, Theor. Comput. Sci..

[24]  C. H,et al.  Handbook of enumerative combinatorics , 2022 .