Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function.

A method is presented for predicting the space group of a structure given a calculated or measured atomic pair distribution function (PDF) from that structure. The method utilizes machine learning models trained on more than 100 000 PDFs calculated from structures in the 45 most heavily represented space groups. In particular, a convolutional neural network (CNN) model is presented which yields a promising result in that it correctly identifies the space group among the top-6 estimates 91.9% of the time. The CNN model also successfully identifies space groups for 12 out of 15 experimental PDFs. Interesting aspects of the failed estimates are discussed, which indicate that the CNN is failing in similar ways as conventional indexing algorithms applied to conventional powder diffraction data. This preliminary success of the CNN model shows the possibility of model-independent assessment of PDF data on a wide class of materials.

[1]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[2]  Andrew L. Goodwin,et al.  The crystallography of correlated disorder , 2015, Nature.

[3]  Matthew J Cliffe,et al.  Structure determination of disordered materials from diffraction data. , 2009, Physical review letters.

[4]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[5]  Mark T. Swihart,et al.  Synthesis and Properties of Plasmonic Boron‐Hyperdoped Silicon Nanoparticles , 2019, Advanced Functional Materials.

[6]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[7]  Tara N. Sainath,et al.  FUNDAMENTAL TECHNOLOGIES IN MODERN SPEECH RECOGNITION Digital Object Identifier 10.1109/MSP.2012.2205597 , 2012 .

[8]  Nakamura,et al.  Structure and magnetic properties of Sr2-xAxIrO4 (A=Ca and Ba). , 1995, Physical review. B, Condensed matter.

[9]  J. W. Visser A fully automatic program for finding the unit cell from powder data , 1969 .

[10]  Masatomo Yashima,et al.  Positional disorder of oxygen ions in ceria at high temperatures , 2004 .

[11]  Marcus A. Neumann,et al.  X-Cell: a novel indexing algorithm for routine tasks and difficult cases , 2003 .

[12]  Ian P. Swainson,et al.  Phase transitions in the perovskite methylammonium lead bromide, CH3ND3PbBr3 , 2003 .

[13]  H. Wondratschek,et al.  Korrekturen zu den Angaben `Untergruppen' in den Raumgruppen der Internationalen Tabellen zu Bestimmung von Kristallstrukturen (1935), Band I. Corrections to the sections `Untergruppen' of the space groups in Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935), Vol. I , 1969 .

[14]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[15]  Carmelo Giacovazzo,et al.  Advances in powder diffraction pattern indexing: N-TREOR09 , 2009 .

[16]  W. H. Baur,et al.  Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures , 1971 .

[17]  William I. F. David,et al.  ExtSym: a program to aid space‐group determination from powder diffraction data , 2008 .

[18]  Michigan State University,et al.  Crystal structure solution from experimentally determined atomic pair distribution functions , 2010, 1003.1097.

[19]  E. L. Yates,et al.  LXVI. X-ray measurement of the thermal expansion of pure nickel , 1936 .

[20]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Roland Ward,et al.  The Preparation of a Strontium-Iridium Oxide Sr2IrO41,2 , 1957 .

[23]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[24]  Daniel Louër,et al.  Powder pattern indexing with the dichotomy method , 2004 .

[25]  Reinhard B. Neder,et al.  Universal solvent restructuring induced by colloidal nanoparticles , 2015, Science.

[26]  M. Marezio,et al.  The crystal structure of Ti4O7, a member of the homologous series TinO2n−1 , 1971 .

[27]  P. M. D. Wolff,et al.  On the determination of unit‐cell dimensions from powder diffraction patterns , 1957 .

[28]  Takeshi Egami,et al.  Underneath the Bragg Peaks , 2003 .

[29]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[30]  Carmelo Giacovazzo,et al.  Direct Phasing in Crystallography: Fundamentals and Applications , 1998 .

[31]  C. Giacovazzo,et al.  EXPO2009: structure solution by powder data in direct and reciprocal space , 2009 .

[32]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[33]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[34]  Takao Furubayashi,et al.  Structural and magnetic studies of metal-insulator transition in thiospinel CuIr2S4 , 1994 .

[35]  Simon J L Billinge,et al.  Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[36]  L. L. Boyle,et al.  Klassengleichen supergroup–subgroup relationships between the space groups , 1972 .

[37]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[38]  M. Horn,et al.  Refinement of the structure of anatase at several temperatures , 1972 .

[39]  A. Santoro,et al.  Geometrical ambiguities in the indexing of powder patterns , 1975 .

[40]  Alan A. Coelho,et al.  Indexing of powder diffraction patterns by iterative use of singular value decomposition , 2002 .

[41]  A. Santoro,et al.  Neutron Powder Diffraction Study of the Crystal Structures of Sr2RuO4 and Sr2IrO4 at Room Temperature and at 10 K , 1994 .

[42]  Masao Kobori,et al.  Switching of conducting planes by partial dimer formation in IrTe 2 , 2014 .

[43]  A. C. Lawson,et al.  Structures of the ferroelectric phases of barium titanate , 1993 .

[44]  M. Fleet The structure of magnetite , 1981 .

[45]  M. Scheffler,et al.  Insightful classification of crystal structures using deep learning , 2017, Nature Communications.

[46]  Alan A. Coelho An indexing algorithm independent of peak position extraction for X-ray powder diffraction patterns , 2017 .

[47]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[48]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[49]  P. B. James,et al.  The crystal structure of MoSe2 , 1963 .

[50]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[51]  Vadim S. Urusov,et al.  Frequency distribution and selection of space groups in inorganic crystal chemistry , 2009 .

[52]  W. Punch,et al.  Ab initio determination of solid-state nanostructure , 2006, Nature.

[53]  Xiaohao Yang,et al.  Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. , 2014, Nano letters.

[54]  Haidong Zhou,et al.  Absence of local fluctuating dimers in superconducting Ir 1 -x (Pt ,Rh ) x Te 2 , 2017, 1801.00050.

[55]  Gary King,et al.  Logistic Regression in Rare Events Data , 2001, Political Analysis.

[56]  Hideaki Takano,et al.  Resistance and Susceptibility Anomalies in IrTe2 and CuIr2Te4 , 1999 .

[57]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[58]  W. Park,et al.  Classification of crystal structure using a convolutional neural network , 2017, IUCrJ.

[59]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[60]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[61]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[62]  T. Hahn,et al.  International Tables for Crystallography: Volume A: Space-Group Symmetry , 1987 .

[63]  Ersan Ustundag,et al.  Atomic pair distribution function analysis of materials containing crystalline and amorphous phases , 2005 .

[64]  C. L. Farrow,et al.  Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis , 2007, 0704.1288.

[65]  T. Schmitz Fundamentals Of Powder Diffraction And Structural Characterization Of Materials , 2016 .

[66]  Thomas Proffen,et al.  Probing Local Dipoles and Ligand Structure in BaTiO3 Nanoparticles , 2010 .

[67]  Simon J. L. Billinge,et al.  Improved measures of quality for the atomic pair distribution function , 2003 .