The use of models at field and farm levels for the ex ante assessment of new pea genotypes

Abstract The use of models for genotype assessment has increased greatly in the last 10–15 years, either to assist the choice of the best cultivar for growing conditions, or to identify virtual genotypes as targets for breeding. Most studies are at the plant and field scales. However, restrictions due to work organisation at the farm level can affect genotype performance. The objective of our study was to propose a method to analyse the effects of farm constraints on crop production in the context of genotype × management × environment (G × M × E) interactions. Three types of pea genotypes, with their optimal sowing times, were compared: classic winter types sown at the end of autumn, spring sown types, and newly developed Hr types sown at the beginning of autumn. Their grain yields were simulated combining three models: a pea crop model sensitive to the main stresses affecting pea yield, a model simulating the change in soil structure according to the operations performed on the field, and a work organisation model simulating the dates of the main operations (soil tillage, sowing, harvest) at the farm scale. Simulations considering the constraints of farm work organisation showed that soil compaction was more frequent and sowing date more variable in the case of winter and spring peas than in the case of the new Hr pea genotype. This increased the risk of yield loss and the year-to-year variability of grain yield. Variety performances were thus modified taking into account farm constraints. The consideration of farm work organisation in combination with soil modelling allowed a wider variety of growing conditions to be explored than is usually the case for breeding trials on experimental stations. Generalizing the proposed method based on coupling models at farm level could thus help to define the traits favourable for innovative genotypes adapted to farmers’ conditions at no extra experimental cost.

[1]  D. Moot,et al.  Yield components, harvest index and plant type in relation to yield differences in field pea genotypes , 2004, Euphytica.

[2]  T. Sinclair,et al.  Field Pea Transpiration and Leaf Growth in Response to Soil Water Deficits , 1996 .

[3]  J. Meynard,et al.  Elaboration du rendement et fertilisation azotée du blé d'hiver en Champagne crayeuse II. - Types de réponse à la fumure azotée et application de la méthode du bilan prévisionnel , 1981 .

[4]  K. Boote,et al.  Physiology and modelling of traits in crop plants: implications for genetic improvement , 2001 .

[5]  J. Meynard,et al.  Predictive study of the advantages of cleistogamy in oilseed rape in limiting unwanted gene flow , 2006, Euphytica.

[6]  J. Meynard,et al.  Yield and protein concentration of spring malting barley: the effects of cropping systems in the Paris Basin (France) , 2003 .

[7]  H. van Keulen,et al.  Potential wheat yields in Zambia—A simulation approach , 1984 .

[8]  J. Wery,et al.  High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. , 2003, Functional plant biology : FPB.

[9]  C. Desmyter,et al.  Floral initiation in field-grown forage peas is delayed to a greater extent by short photoperiods, than in other types of European varieties , 1999, Euphytica.

[10]  Christophe Lecomte,et al.  L'évaluation expérimentale des innovations variétales. Proposition d'outils d'analyse de l'interaction génotype - milieu adaptés à la diversité des besoins et des contraintes des acteurs de la filière semences. , 2005 .

[11]  T. Doré,et al.  The role of grain number, nitrogen nutrition and stem number in limiting pea crop (Pisum sativum) yields under agricultural conditions , 1998 .

[12]  B. Carrouée,et al.  Quelle place pour le pois dans une agriculture respectueuse de l'environnement ? Argumentaire agri-environnemental , 2003 .

[13]  B. Ney,et al.  Quantitative effects of soil nitrate, growth potential and phenology on symbiotic nitrogen fixation of pea (Pisum sativum L.) , 2002, Plant and Soil.

[14]  Graeme L. Hammer,et al.  Future contributions of crop modelling—from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement , 2002 .

[15]  A. Condon,et al.  Evaluating the Impact of a Trait for Increased Specific Leaf Area on Wheat Yields Using a Crop Simulation Model , 2003 .

[16]  Jean Roger-Estrade,et al.  Effects of Soil Structure on Pea (Pisum sativum L.) Root Development According to Sowing Date and Cultivar , 2006, Plant and Soil.

[17]  I. Lejeune-Hénaut,et al.  Genetic studies of selection criteria for productive and stable peas , 2002, Euphytica.

[18]  D. Laurent,et al.  Variabilité de la durée de la phase végétative chez le pois (Pisum sativum L.). Application à la sélection de types résistants à l'hiver et à la détermination de la date de semis , 1982 .

[19]  François Papy,et al.  Comportement d'une couche labourée sous des actions de compactage en fonction de son état hydrique et structural , 1987 .

[20]  M. Jeuffroy,et al.  A simulation model for assimilate partitioning between pods in pea (Pisum sativum L.) during the period of seed set; validation in field conditions , 1995 .

[21]  Marianne Cerf,et al.  Basis for designing a tool to evaluate new cultivars , 2010, Agronomy for Sustainable Development.

[22]  Jérémie Lecoeur,et al.  Change with time in potential radiation-use efficiency in field pea , 2003 .

[23]  B. Tivoli,et al.  Spatio‐temporal development of pycnidia and perithecia and dissemination of spores of Mycosphaerella pinodes on pea (Pisum sativum) , 1996 .

[24]  J. Meynard,et al.  Introduction of genotypic effects into GeneSys-Rape: the example of height and male sterility , 2005 .

[25]  B. Ney,et al.  Influence of nitrogen availability on seed nitrogen accumulation in pea , 1999 .

[26]  M. Jeuffroy,et al.  Effect of Sowing Date and Cultivar on Root System Development in Pea (Pisum sativum L.) , 2006, Plant and Soil.

[27]  H. Boizard,et al.  Modelling structural changes in tilled topsoil over time as a function of cropping systems , 2000 .

[28]  F. Papy,et al.  Modelling decision-making processes for annual crop management , 1998 .

[29]  Graeme L. Hammer,et al.  Improving Genotypic Adaptation in Crops – a Role for Breeders, Physiologists and Modellers , 1991, Experimental Agriculture.

[30]  M. Jeuffroy,et al.  Agronomic Performance of Different Pea Cultivars Under Various Sowing Periods and Contrasting Soil Structures , 2008 .

[31]  S. Gayler,et al.  Agricultural Crop Models: Concepts of Resource Acquisition and Assimilate Partitioning , 2009 .