A regression metamodel of a maintenance float problem with Erlang-2 failure distribution

This paper presents a framework for constructing regression metamodels for maintenance float systems (MFSs) with an Erlang-2 failure distribution. The metamodel is used in predicting the average equipment utilization (EU) of a maintenance float system for any given combination of repairpersons and standby units. It is shown that the regression metamodel from a 25 – 1 factorial experiment yields close approximations to simulation results. The EU metamodel is further applied in a cost structure to determine the optimum number ofstandby units, and the number of repairpersons. Furthermore, sensitivity analysis on EU can be conducted with the metamodel presented in this paper.

[1]  Christian N. Madu,et al.  Coefficient of variation: A critical factor in maintenance float policy , 1990, Comput. Oper. Res..

[2]  Ernest Koenigsberg,et al.  Finite Queues and Cyclic Queues , 1960 .

[3]  Jack P. C. Kleijnen,et al.  Experimental design and regression analysis in simulation : An FMS case study , 1988 .

[4]  J. A. Buzacott,et al.  Queueing models for a flexible machining station Part II: The method of Coxian phases , 1985 .

[5]  Christian N. Madu,et al.  Waiting Line Effects in Analytical Maintenance Float Policy , 1988 .

[6]  Susan L. Solomon Simulation of waiting-line systems , 1983 .

[7]  Linda Weiser Friedman,et al.  The Metamodel in Simulation Analysis: Can It Be Trusted? , 1988 .

[8]  James W. Chrissis,et al.  Multi-echelon system design via simulation , 1986, Simul..

[9]  C. Ireland Fundamental concepts in the design of experiments , 1964 .

[10]  Christian N. Madu An economic design for optimum maintenance float policy , 1990 .

[11]  Richard M. Soland,et al.  A Closed Queueing Network Model for Multi-Echelon Repairable Item Provisioning. , 1983 .

[12]  Christian N. Madu The study of a maintenance float model with gamma failure distribution , 1987 .

[13]  Jeffery K. Cochran,et al.  Optimization of multivariate simulation output models using a group screening method , 1990 .

[14]  J. Kleijnen Statistical tools for simulation practitioners , 1986 .

[15]  Raymond A. Marie An Approximate Analytical Method for General Queueing Networks , 1979, IEEE Transactions on Software Engineering.

[16]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[17]  Jeffrey P. Buzen,et al.  Computational algorithms for closed queueing networks with exponential servers , 1973, Commun. ACM.

[18]  Christian N. Madu Determination of maintenance floats using Buzen's algorithm , 1988 .

[19]  S. Christian Albright,et al.  Markovian multiechelon repairable inventory system , 1988 .

[20]  Christian N. Madu Simulation in manufacturing: A regression metamodel approach , 1990 .

[21]  Christian N. Madu,et al.  Maintenance float policy estimation with imperfect information , 1989 .

[22]  W. Lewis,et al.  Reliability analysis based on the Weibull distribution: an application to maintenance float factors , 1983 .

[23]  W. J. Gordon,et al.  Closed Queuing Systems with Exponential Servers , 1967, Oper. Res..

[24]  Christian N. Madu A Closed Queueing Maintenance Network with Two Repair Centres , 1988 .