A Neural Switch for Active and Passive Fear

[1]  M. Mesulam,et al.  Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6) , 1983, Neuroscience.

[2]  J Hennig,et al.  RARE imaging: A fast imaging method for clinical MR , 1986, Magnetic resonance in medicine.

[3]  E. Tribollet,et al.  Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography , 1988, Brain Research.

[4]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  B. Roozendaal,et al.  Opposite Effects of Central Amygdaloid Vasopressin and Oxytocin on the Regulation of Conditioned Stress Responses in Male Rats , 1992, Annals of the New York Academy of Sciences.

[6]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[7]  J. D. McGaugh,et al.  Strain-dependent effects of D2 dopaminergic and muscarinic-cholinergic agonists and antagonists on memory consolidation processes in mice , 1997, Behavioural Brain Research.

[8]  C. H. Vanderwolf,et al.  Neocortical activation: modulation by multiple pathways acting on central cholinergic and serotonergic systems , 1997, Experimental Brain Research.

[9]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[10]  P. Veinante,et al.  Distribution of oxytocin‐ and vasopressin‐binding sites in the rat extended amygdala: a histoautoradiographic study , 1997, The Journal of comparative neurology.

[11]  Christian Lüscher,et al.  G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons , 1997, Neuron.

[12]  B. Rosen,et al.  Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation , 1998, Magnetic resonance in medicine.

[13]  M. Schiess,et al.  Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro , 1999, Journal of neuroscience research.

[14]  Michael Davis,et al.  The amygdala , 2000, Current Biology.

[15]  Joseph E LeDoux Emotion circuits in the brain. , 2009, Annual review of neuroscience.

[16]  Michael Davis,et al.  The amygdala: vigilance and emotion , 2001, Molecular Psychiatry.

[17]  J. Mandeville,et al.  Improved mapping of pharmacologically induced neuronal activation using the IRON technique with superparamagnetic blood pool agents , 2001, Journal of magnetic resonance imaging : JMRI.

[18]  Joseph B. Mandeville,et al.  Pharmacologic Magnetic Resonance Imaging (phMRI) , 2002 .

[19]  J. E CENTRAL CHOLINERGIC PATHWAYS IN THE RAT : AN OVERVIEW BASED ON AN ALTERNATIVE NOMENCLATURE ( Chl-Ch 6 ) , 2002 .

[20]  E. Jolkkonen,et al.  Projections from the amygdaloid complex to the magnocellular cholinergic basal forebrain in rat , 2002, Neuroscience.

[21]  J. Power,et al.  The amygdaloid complex: anatomy and physiology. , 2003, Physiological reviews.

[22]  M. Boccia,et al.  Atropine, an anticholinergic drug, impairs memory retrieval of a high consolidated avoidance response in mice , 2003, Neuroscience Letters.

[23]  T. Reese,et al.  Functional MRI using intravascular contrast agents: detrending of the relative cerebrovascular (rCBV) time course. , 2003, Magnetic resonance imaging.

[24]  P. Sah,et al.  Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala. , 2004, Journal of neurophysiology.

[25]  C. Baratti,et al.  Memory facilitation with posttrial injection of oxotremorine and physostigmine in mice , 1979, Psychopharmacology.

[26]  Nathan S. Hageman,et al.  Columnar Specificity of Microvascular Oxygenation and Volume Responses: Implications for Functional Brain Mapping , 2004, The Journal of Neuroscience.

[27]  P. Veinante,et al.  Vasopressin and Oxytocin Excite Distinct Neuronal Populations in the Central Amygdala , 2005, Science.

[28]  Angelo Bifone,et al.  A multimodality investigation of cerebral haemodynamics and autoregulation in phMRI , 2006 .

[29]  Joseph E LeDoux,et al.  Rethinking the Fear Circuit: The Central Nucleus of the Amygdala Is Required for the Acquisition, Consolidation, and Expression of Pavlovian Fear Conditioning , 2006, The Journal of Neuroscience.

[30]  Angelo Bifone,et al.  Functional connectivity in the pharmacologically activated brain: Resolving networks of correlated responses to d‐amphetamine , 2007, Magnetic resonance in medicine.

[31]  C. Gross,et al.  Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus , 2007, Nature Neuroscience.

[32]  Angelo Bifone,et al.  In vivo mapping of functional connectivity in neurotransmitter systems using pharmacological MRI , 2007, NeuroImage.

[33]  Angelo Bifone,et al.  Study-level wavelet cluster analysis and data-driven signal models in pharmacological MRI , 2007, Journal of Neuroscience Methods.

[34]  N. Canteras,et al.  Hypothalamic sites responding to predator threats – the role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior , 2008, The European journal of neuroscience.

[35]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[36]  Michael Davis,et al.  Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer , 2008, Brain Structure and Function.

[37]  R. Stoop,et al.  Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response. , 2008, Progress in brain research.

[38]  Y. Humeau,et al.  Amygdala Inhibitory Circuits and the Control of Fear Memory , 2009, Neuron.

[39]  A. Gozzi,et al.  Brain penetration of local anaesthetics in the rat: Implications for experimental neuroscience , 2010, Journal of Neuroscience Methods.