PERELMAN'S PROOF OF THE POINCAR´ E CONJECTURE: A NONLINEAR PDE PERSPECTIVE

We discuss some of the key ideas of Perelman's proof of Poincare's conjecture via the Hamilton program of using the Ricci flow, from the perspec- tive of the modern theory of nonlinear partial differential equations.

[1]  Huai-Dong Cao,et al.  A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow , 2006 .

[2]  M. Gromov Pseudo holomorphic curves in symplectic manifolds , 1985 .

[3]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[4]  J. Morgan,et al.  Ricci Flow and the Poincare Conjecture , 2006, math/0607607.

[5]  D. DeTurck Deforming metrics in the direction of their Ricci tensors , 1983 .

[6]  Siddhartha Gadgil,et al.  Ricci Flow and the Poincaré Conjecture , 2007 .

[7]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[8]  T. Ivey Local existence of Ricci solitons , 1996 .

[9]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .

[10]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[11]  G. Perelman Finite extinction time for the solutions to the Ricci flow on certain three-manifolds , 2003, math/0307245.

[12]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[13]  Ricci flow on compact Kähler manifolds of positive bisectional curvature , 2003, math/0302087.

[14]  I. Holopainen Riemannian Geometry , 1927, Nature.

[15]  J. Cheeger FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS. , 1970 .

[16]  Jeff Cheeger,et al.  Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds , 1982 .

[17]  P. Lu,et al.  Uniqueness of standard solutions in the work of Perelman , 2005 .

[18]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[19]  B. Chow Elliptic and parabolic methods in geometry , 1996 .

[20]  R. Hamilton A Compactness Property for Solutions of the Ricci Flow , 1995 .

[21]  A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow , 2002, math/0211349.

[22]  Wan-Xiong Shi Deforming the metric on complete Riemannian manifolds , 1989 .

[23]  J. Cheeger,et al.  COLLAPSING RIEMANNIAN MANIFOLDS WHILE KEEPING THEIR CURVATURE BOUNDED . II , 2008 .

[24]  John Milnor,et al.  Towards the Poincaré Conjecture and the Classification of 3-Manifolds, Volume 50, Number 10 , 2003 .

[25]  Uniqueness of the Ricci flow on complete noncompact manifolds , 2005, math/0505447.

[26]  R. Hamilton Non-singular solutions of the Ricci flow on three-manifolds , 1999 .

[27]  Volume collapsed three-manifolds with a lower curvature bound , 2003, math/0304472.

[28]  Wan-Xiong Shi Ricci deformation of the metric on complete noncompact Riemannian manifolds , 1989 .

[29]  J. Morgan,et al.  Recent progress on the Poincaré conjecture and the classification of 3-manifolds , 2004 .

[30]  J. Sacks,et al.  The Existence of Minimal Immersions of 2-Spheres , 1981 .

[31]  Geometrization of 3-Manifolds via the Ricci Flow , 2003 .

[32]  Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman , 2003, math/0308090.

[33]  Bruce Kleiner,et al.  Notes on Perelman's papers , 2006 .

[34]  Ricci Flow with Surgery on Four-manifolds with Positive Isotropic Curvature , 2005, math/0504478.