The caenorhabditis elegans fate-determining gene mab-9 encodes a T-box protein required to pattern the posterior hindgut.

Caenorhabditis elegans mab-9 mutants are defective in hindgut and male tail development because of cell fate transformations in two posterior blast cells, B and F. We have cloned mab-9 and show that it encodes a member of the T-box family of transcriptional regulators. MAB-9 localizes to the nucleus of B and F and their descendents during development, suggesting that it acts cell autonomously in the posterior hindgut to direct cell fate. T-box genes related to brachyury have also been implicated in hindgut patterning, and our results support models for an evolutionarily ancient role for these genes in hindgut formation.

[1]  A. H. Clark,et al.  Animal evolution , 1981 .

[2]  P. Chesley Development of the short‐tailed mutant in the house mouse , 1935 .

[3]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[4]  J. Sulston,et al.  The Caenorhabditis elegans male: postembryonic development of nongonadal structures. , 1980, Developmental biology.

[5]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[6]  J. Hodgkin Male Phenotypes and Mating Efficiency in CAENORHABDITIS ELEGANS. , 1983, Genetics.

[7]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[8]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  J. Hodgkin,et al.  The mab-9 gene controls the fate of B, the major male-specific blast cell in the tail region of Caenorhabditis elegans. , 1989, Genes & development.

[10]  A. Poustka,et al.  Cloning of the T gene required in mesoderm formation in the mouse , 1990, Nature.

[11]  D. Wilkinson,et al.  Expression pattern of the mouse T gene and its role in mesoderm formation , 1990, Nature.

[12]  A. Chisholm,et al.  Control of cell fate in the tail region of C. elegans by the gene egl-5. , 1991, Development.

[13]  B. Poeck,et al.  A homology domain shared between Drosophila optomotor-blind and mouse Brachyury is involved in DNA binding. , 1992, Biochemical and biophysical research communications.

[14]  C. Nüsslein-Volhard,et al.  no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. , 1994, Development.

[15]  B. Herrmann,et al.  Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. , 1994, Genes & development.

[16]  Henry F. Epstein,et al.  Caenorhabditis elegans : modern biological analysis of an organism , 1995 .

[17]  C. Nielsen Animal Evolution: Interrelationships of the Living Phyla , 1995 .

[18]  B. D. Williams Genetic mapping with polymorphic sequence-tagged sites. , 1995, Methods in cell biology.

[19]  M. Bosenberg,et al.  lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). , 1996, Development.

[20]  J. Singer,et al.  Drosophila brachyenteron regulates gene activity and morphogenesis in the gut. , 1996, Development.

[21]  J. Smith,et al.  Brachyury and the T-box genes. , 1997, Current opinion in genetics & development.

[22]  L. Silver,et al.  Three novel T-box genes in Caenorhabditis elegans. , 1997, Genome.

[23]  P. Sternberg,et al.  The PAX gene egl-38 mediates developmental patterning in Caenorhabditis elegans. , 1997, Development.

[24]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[25]  G. Ruvkun,et al.  The taxonomy of developmental control in Caenorhabditis elegans. , 1998, Science.

[26]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[27]  M. Levine,et al.  Suppressor of hairless activates brachyury expression in the Ciona embryo. , 1998, Developmental biology.

[28]  Leo X. Liu,et al.  Large-scale taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes. , 1998, Genome research.

[29]  M. Blaxter,et al.  Caenorhabditis elegans is a nematode. , 1998, Science.

[30]  M. Evans,et al.  A combined analysis of genomic and primary protein structure defines the phylogenetic relationship of new members if the T-box family. , 1998, Genomics.

[31]  P. Sternberg,et al.  Characterization of seven genes affecting Caenorhabditis elegans hindgut development. , 1999, Genetics.

[32]  S. W. Emmons,et al.  Patterning of Caenorhabditis elegans posterior structures by the Abdominal-B homolog, egl-5. , 1999, Developmental biology.

[33]  E. Davidson,et al.  A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. , 1999, Development.

[34]  J. Smith,et al.  T-box genes: what they do and how they do it. , 1999, Trends in genetics : TIG.

[35]  T. Kusch,et al.  Functions for Drosophila brachyenteron and forkhead in mesoderm specification and cell signalling. , 1999, Development.