Lake ecosystem on the Qinghai–Tibetan Plateau severely altered by climatic warming and human activity

[1]  S. Clemens,et al.  Isotopic evidence that recent agriculture overprints climate variability in nitrogen deposition to the Tibetan Plateau. , 2020, Environment international.

[2]  A. C. Anil,et al.  Phytoplankton chlorophyll-breakdown pathway: Implication in ecosystem assessment. , 2020, Journal of environmental management.

[3]  C. Patrick Doncaster,et al.  Network parameters quantify loss of assemblage structure in human‐impacted lake ecosystems , 2019, Global change biology.

[4]  B. Cumming,et al.  Influence of glacial flour on the primary and secondary production of sockeye salmon nursery lakes: a comparative modern and paleolimnological study , 2019, Canadian Journal of Fisheries and Aquatic Sciences.

[5]  L. Thompson,et al.  Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis , 2019, Bulletin of the American Meteorological Society.

[6]  S. McGowan,et al.  Regional versus local drivers of water quality in the Windermere catchment, Lake District, United Kingdom: The dominant influence of wastewater pollution over the past 200 years , 2018, Global change biology.

[7]  E. Jeppesen,et al.  Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming. , 2017, Water research.

[8]  Fahu Chen,et al.  Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau , 2017 .

[9]  D. Engstrom,et al.  Increased variability and sudden ecosystem state change in Lake Winnipeg, Canada, caused by 20th century agriculture , 2016 .

[10]  P. McIntyre,et al.  Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems , 2016, Proceedings of the National Academy of Sciences.

[11]  Mark Stevenson,et al.  Impacts of forestry planting on primary production in upland lakes from north‐west Ireland , 2016, Global change biology.

[12]  Hai-ping Hu,et al.  Relationship between the shell geochemistry of the modern aquatic gastropod Radix and water chemistry of lakes of the Tibetan Plateau , 2016, Hydrobiologia.

[13]  J. Hou,et al.  Application of orthogonal design to the extraction and HPLC analysis of sedimentary pigments from lakes of the Tibetan Plateau , 2016, Science China Earth Sciences.

[14]  F. Kong,et al.  Intentional introduction of Artemia sinica (Anostraca) in the high-altitude Tibetan lake Dangxiong Co: the new population and consequences for the environment and for humans , 2015, Chinese Journal of Oceanology and Limnology.

[15]  H. Bennion,et al.  Ecological sensitivity of marl lakes to nutrient enrichment: evidence from Hawes Water, UK , 2015 .

[16]  H. Xie,et al.  An inventory of glacial lakes in the Third Pole region and their changes in response to global warming , 2015 .

[17]  Bin Zhao,et al.  Historical reconstruction of organic carbon inputs to the East China Sea inner shelf: Implications for anthropogenic activities and regional climate variability , 2015 .

[18]  Jean-Pascal van Ypersele de Strihou Climate Change 2014 - Synthesis Report , 2015 .

[19]  Patrick L. Thompson,et al.  Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. , 2015, Ecology letters.

[20]  E. Jeppesen,et al.  Phytoplankton response to winter warming modified by large-bodied zooplankton: an experimental microcosm study , 2015 .

[21]  J. Hou,et al.  Centennial-scale climate variability during the past 2000 years on the central Tibetan Plateau , 2015 .

[22]  Y. Lei,et al.  Classification of Tibetan lakes based on variations in seasonal lake water temperature , 2014 .

[23]  N. Anderson,et al.  Catchment‐mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet , 2014, Global change biology.

[24]  J. Saros,et al.  The influence of glacial meltwater on alpine aquatic ecosystems: a review. , 2013, Environmental science. Processes & impacts.

[25]  Bo Huang,et al.  Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data , 2013 .

[26]  C. Brönmark,et al.  Food-chain length alters community responses to global change in aquatic systems , 2013 .

[27]  B. Modenutti,et al.  Glacier melting and stoichiometric implications for lake community structure: zooplankton species distributions across a natural light gradient , 2013, Global change biology.

[28]  Oliver Köster,et al.  Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming , 2012 .

[29]  J. Saros,et al.  Implications of nitrogen‐rich glacial meltwater for phytoplankton diversity and productivity in alpine lakes , 2012 .

[30]  Tandong Yao,et al.  Third Pole Environment (TPE) , 2012 .

[31]  B. Christiansen,et al.  The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability , 2012 .

[32]  T. Dawson,et al.  Extending the timescale and range of ecosystem services through paleoenvironmental analyses, exemplified in the lower Yangtze basin , 2012, Proceedings of the National Academy of Sciences.

[33]  M. Jansson,et al.  Net ecosystem production in clear‐water and brown‐water lakes , 2012 .

[34]  Yang-jian Zhang,et al.  Ecological and environmental issues faced by a developing Tibet. , 2012, Environmental science & technology.

[35]  J. Christen,et al.  Flexible paleoclimate age-depth models using an autoregressive gamma process , 2011 .

[36]  Stephen F. Ackley,et al.  Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009) , 2011 .

[37]  M. Kenney,et al.  Our current understanding of lake ecosystem response to climate change: What have we really learned , 2011 .

[38]  A. Bräuning,et al.  Late Holocene Asian summer monsoon variability reflected by δ18O in tree‐rings from Tibetan junipers , 2011 .

[39]  James M. Russell,et al.  Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500 , 2010 .

[40]  Guangjian Wu,et al.  Sedimentary evidence for recent increases in production in Tibetan plateau lakes , 2010, Hydrobiologia.

[41]  Erik Jeppesen,et al.  Impacts of climate warming on lake fish community structure and potential effects on ecosystem function , 2010, Hydrobiologia.

[42]  R. Vinebrooke,et al.  Extreme weather events alter planktonic communities in boreal lakes , 2009 .

[43]  P. Ask,et al.  Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes. , 2009, Ecology.

[44]  Ronghua Ma,et al.  Two-decade reconstruction of algal blooms in China's Lake Taihu. , 2009, Environmental science & technology.

[45]  B. Dennis,et al.  Sixty years of environmental change in the world's largest freshwater lake – Lake Baikal, Siberia , 2008, Global Change Biology.

[46]  J. Qiu China: The third pole , 2008, Nature.

[47]  S. Heaney,et al.  Growth of migrating and non‐migrating cryptophytes in thermally and chemically stratified experimental columns , 2008 .

[48]  P. Crutzen,et al.  The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature , 2007, Ambio.

[49]  U. Sommer,et al.  Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton , 2006, Oecologia.

[50]  T. Bianchi,et al.  Early diagenesis of chloropigment biomarkers in the lower Mississippi River and Louisiana shelf: implications for carbon cycling in a river-dominated margin , 2005 .

[51]  D. Lytle,et al.  STOICHIOMETRY AND PLANKTONIC GRAZER COMPOSITION OVER GRADIENTS OF LIGHT, NUTRIENTS, AND PREDATION RISK , 2004 .

[52]  A. Cohen,et al.  Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa , 2003, Nature.

[53]  L. V. Nieuwerburgh,et al.  Pigment transfer from phytoplankton to zooplankton with emphasis on astaxanthin production in the Baltic Sea food web , 2003 .

[54]  J. Elser,et al.  Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere , 2002 .

[55]  H. Lotze,et al.  Complex interactions of climatic and ecological controls on macroalgal recruitment , 2002 .

[56]  S. Hino,et al.  Variations in environmental factors and their effects on biological characteristics of meromictic Lake Abashiri , 2002, Limnology.

[57]  M. Brenner,et al.  Sediment records of phosphorus-driven shifts to phytoplanktondominance in shallow Florida lakes , 2002 .

[58]  C. Honeywill,et al.  Grazing on intertidal microphytobenthos by macrofauna: is pheophorbide a a useful marker? , 2002 .

[59]  W. Wurtsbaugh,et al.  Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah , 2001, Hydrobiologia.

[60]  P. Sorgeloos,et al.  Use of the brine shrimp, Artemia spp., in marine fish larviculture. , 2001 .

[61]  S. Carpenter,et al.  WHOLE‐LAKE FERTILIZATION EFFECTS ON DISTRIBUTION OF PRIMARY PRODUCTION BETWEEN BENTHIC AND PELAGIC HABITATS , 2001 .

[62]  J. Descy,et al.  Grazing experiments with two freshwater zooplankters:fate of chlorophyll and carotenoid pigments , 2000 .

[63]  K. Cuddington,et al.  An individual-based model of pigment flux in lakes: implications for organic biogeochemistry and paleoecology , 1999 .

[64]  T. Abatzopoulos,et al.  Artemia tibetiana : Preliminary characterization of a new Artemia species found in Tibet (People's Republic of China). International Study on Artemia . LIX , 1998 .

[65]  Peter S. Maitland,et al.  The trophic cascade in lakes , 1998 .

[66]  S. Carpenter,et al.  Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes , 1998 .

[67]  D. Kadko,et al.  Chlorophyll-a and pheopigments as tracers of labile organic carbon at the central equatorial Pacific seafloor , 1997 .

[68]  S. Carpenter,et al.  The Trophic Cascade in Lakes , 1994 .

[69]  Cindy Lee,et al.  Early diagenesis of chlorophyll- a in Long Island Sound sediments: A measure of carbon flux and particle reworking , 1991 .

[70]  P. Leavitt,et al.  Effects of grazing by Daphnia on algal carotenoids: Implications for paleolimnology , 1988 .

[71]  J. Downing,et al.  A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters , 1984 .

[72]  J. Sharp,et al.  Determination of total dissolved nitrogen in natural waters1 , 1980 .

[73]  Zhonghui Liu,et al.  Environmental controls on long-chain alkenone occurrence and compositional patterns in lacustrine sediments, northwestern China , 2016 .

[74]  Liu Shiyi The contemporary glaciers in China based on the Second Chinese Glacier Inventory , 2015 .

[75]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[76]  Lee E. Brown,et al.  Hydroecological response of river systems to shrinking glaciers , 2009 .

[77]  Relationships Vito,et al.  segmented: An R Package to Fit Regression Models with Broken-Line , 2008 .

[78]  John P. Smol,et al.  Pollution of Lakes and Rivers: A Paleoenvironmental Perspective , 2002 .

[79]  J. L. Teranes,et al.  Sediment Organic Matter , 2002 .

[80]  S. Schneider,et al.  Climate Change 2001: Synthesis Report: A contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2001 .

[81]  J. Smol,et al.  Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques , 2001 .

[82]  Stephen R. Carpenter,et al.  Center for Limnology, University of Wisconsin, 680 N. Park St., Madison, Wisconsin 53717 , 1998 .

[83]  Peter R. Leavitt,et al.  A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance , 1993 .

[84]  Daniel J. Repeta,et al.  Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton , 1991 .

[85]  S. Carpenter,et al.  Chlorophyll production, degradation, and sedimentation: Implications for paleolimnology1 , 1986 .

[86]  E. Mccauley,et al.  The estimation of the abundance and biomass of zooplankton in samples , 1984 .

[87]  J. P. Riley,et al.  A modified single solution method for the determination of phosphate in natural waters , 1962 .