Laser Sources for Confocal Microscopy

Laser assisted confocal microscopy has made a lot of progress over the past few years. Laser systems have become more modular and compact. There is an ever-increasing number of available laser excitation lines as well as an improvement in user friendliness and ease of use. At the same time, expansion of Web resources has provided easy access to a wealth of information. Our goal is both to aid the experienced and novice microscopist in quickly locating and sorting through the relevant laser information and to provide a means of avoiding common problems and pitfalls in the use of laser excitation in the various fluorescence techniques such as fluorescence correlation spectroscopy (FCS), fluorescence lifetime imaging microscopy (FLIM), fluorescence loss in photobleaching (FLIP), fluorescence recovery after photobleaching (FRAP), optical coherence tomography (OCT), second harmonic generation (SHG), single molecule detection (SMD), and single particle tracking (SPT). In this chapter we describe the characteristic properties of a number of lasers commonly used in fluorescence microscopy.

[1]  A. Bloom,et al.  Gas lasers. , 1968, Applied optics.

[2]  R. Pressley CRC handbook of lasers : with selected data on optical technology , 1971 .

[3]  A. Schawlow Masers and lasers , 1976, IEEE Transactions on Electron Devices.

[4]  R Hard,et al.  Phase-randomized laser illumination for microscopy. , 1977, Journal of cell science.

[5]  W. G. Driscoll,et al.  Handbook of optics , 1978 .

[6]  Tunable-ultraviolet generation by sum-frequency mixing , 1978 .

[7]  Gordon W. Ellis A fiber-optic phase-randomizer for microscope illumination by laser , 1979 .

[8]  D. Sliney,et al.  Safety with Lasers and Other Optical Sources , 1980, Springer US.

[9]  David H. Sliney,et al.  Safety with Lasers and Other Optical Sources: A Comprehensive Handbook , 1980 .

[10]  David C. Brown High-Peak-Power Nd: Glass Laser Systems , 1981 .

[11]  A. DeMaria,et al.  Laser handbook , 1981, IEEE Journal of Quantum Electronics.

[12]  G. Güntherodt,et al.  Basic concepts and instrumentation , 1982 .

[13]  R. E. Dale,et al.  Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology , 1983, NATO Advanced Science Institutes Series.

[14]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[15]  Joan Bromberg,et al.  Masers and Lasers: An Historical Approach , 1983 .

[16]  D. O'connor,et al.  Time-Correlated Single Photon Counting , 1984 .

[17]  J. Gordon,et al.  Negative dispersion using pairs of prisms. , 1984, Optics letters.

[18]  D. C. Winburn Practical laser safety , 1985 .

[19]  Enrico Gratton,et al.  A multifrequency phase fluorometer using the harmonic content of a mode-locked laser , 1985 .

[20]  G. H. Vickers,et al.  Novel Techniques for the Determination of Fluorescence Lifetimes , 1985 .

[21]  A. Pinto,et al.  Tunable solid state lasers : proceedings of the First International Conference, La Jolla, Calif., June 13-15, 1984 , 1985 .

[22]  Laser diode array pumping of solid-state lasers , 1986 .

[23]  Lamps for pumping solid-state lasers: performance and optimization , 1986 .

[24]  Diode laser pumping of solid-state lasers , 1986 .

[25]  David H. Sliney LASER SAFETY: THE NEWEST FACE ON AN OLD STANDARD. , 1986 .

[26]  I. Abella,et al.  Tunable solid-state lasers , 1986, IEEE Journal of Quantum Electronics.

[27]  Shubhra Gangopadhyay,et al.  Fast Analog Technique For Determining Fluorescence Lifetimes Of Multicomponent Materials By Pulsed Laser , 1987, Photonics West - Lasers and Applications in Science and Engineering.

[28]  J. Herrmann,et al.  Lasers for ultrashort light pulses , 1987 .

[29]  G C Salzman,et al.  Automated single-cell manipulation and sorting by light trapping. , 1987, Applied optics.

[30]  L. F. Mollenauer,et al.  Tunable Lasers , 1987 .

[31]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[32]  Knowledge of arc-lamp aging and lifetime effects can help to avoid unpleasant surprises , 1988 .

[33]  A. Draaijer,et al.  A standard video-rate confocal laser-scanning reflection and fluorescence microscope , 1988 .

[34]  Hiroyasu Itoh,et al.  Submicrosecond Imaging Under A Pulsed-Laser Fluorescence Microscope , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[35]  Jay R. Knutson Fluorescence Detection: Schemes To Combine Speed, Sensitivity And Spatial Resolution , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[36]  Scientists develop useful optical materials , 1988 .

[37]  David H. Auston,et al.  Ultrashort Laser Pulses and Applications , 1988 .

[38]  Tsuyoshi Hayakawa,et al.  Development Of A Time-Resolved Microfluorimeter With A Synchroscan Streak Camera And Its Application To Studies Of Cell Membranes , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[39]  G. Naylor,et al.  Copper vapor lasers reach high power , 1988 .

[40]  Scanned aperture light microscopy , 1988 .

[41]  John J. Birmingham,et al.  Laser Spectroscopic Measurements Of Triplet-State Lifetimes In Both Time And Frequency Domains , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[42]  Enrico Gratton,et al.  Digital parallel acquisition in frequency domain fluorimetry , 1989 .

[43]  Laser water-cooling loops deserve attention , 1989 .

[44]  T M Jovin,et al.  Luminescence digital imaging microscopy. , 1989, Annual review of biophysics and biophysical chemistry.

[45]  Hans J. Tanke,et al.  Does light microscopy have a future? , 1989 .

[46]  David M. Coleman,et al.  Time-Resolved Fluorescence Microscopy Using Multichannel Photon Counting , 1990 .

[47]  Enrico Gratton,et al.  Parallel acquisition of fluorescence decay using array detectors , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[48]  Joseph R. Lakowicz,et al.  Time-resolved laser spectroscopy in biochemistry II , 1990 .

[49]  A. Kaminskiĭ,et al.  Laser Crystals: Their Physics and Properties , 1990 .

[50]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[51]  H. Tanke,et al.  Inorganic phosphors as new luminescent labels for immunocytochemistry and time-resolved microscopy. , 1990, Cytometry.

[52]  G. Mourou,et al.  Multikilohertz Ti:A1(2)O(3) amplifier for high-power femtosecond pulses. , 1991, Optics letters.

[53]  Stefan W. Hell,et al.  A confocal beam scanning white‐light microscope , 1991 .

[54]  E. R. Mcclure Manufacturers turn precision optics with diamond , 1991 .

[55]  T M Jovin,et al.  Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. , 1991, Biophysical journal.

[56]  H. T. Powell,et al.  Ten thousand flashlamps will drive most-powerful laser , 1991 .

[57]  Fundamental Studies on Time-Resolved Fluorescence Image Spectroscopy Techniques , 1991 .

[58]  A. Periasamy,et al.  Fluorescence Lifetime Imaging Microscopy (FLIM): Instrumentation and Applications , 1992 .

[59]  Ion lasers deliver power at visible and UV wavelengths , 1992 .

[60]  T. V. Higgins,et al.  Nonlinear crystals : where the colors of the rainbow begin , 1992 .

[61]  Joseph R. Lakowicz,et al.  Fluorescence lifetime sensing generates cellular images , 1992 .

[62]  Thomas M. Jovin,et al.  Time-resolved imaging fluorescence microscopy , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[63]  Christopher G. Morgan,et al.  Prospects for confocal imaging based on nanosecond fluorescence decay time , 1992 .

[64]  Carol J. Cogswell,et al.  Colour confocal reflection microscopy using red, green and blue lasers , 1992 .

[65]  H. Schneckenburger,et al.  Microscopic fluorescence spectroscopy and diagnosis , 1992 .

[66]  Mark D. Fricker,et al.  Wavelength considerations in confocal microscopy of botanical specimens , 1992 .

[67]  Takashi Tsumanuma,et al.  Ultrathin single-mode image fiber for medical usage , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[68]  James N. Turner,et al.  Optimized reflection imaging in laser confocal microscopy and its application to neurobiology: Modificationsa to the biorad MRC‐500 , 1992 .

[69]  Joseph R. Lakowicz,et al.  Fluorescence lifetime imaging of Ca2+ using visible wavelength excitation and emission , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[70]  Hans C. Gerritsen,et al.  Fluorescence lifetime imaging using a confocal laser scanning microscope , 1992 .

[71]  David R. Sandison,et al.  Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser-scanning microscopy , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[72]  P. F. Moulton,et al.  Tunable solid-state lasers , 1992, Proc. IEEE.

[73]  Arthur F. Gmitro,et al.  Angioscopic fluorescence imaging system , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[74]  W. Kaiser,et al.  Ultrashort Laser Pulses , 1993 .

[75]  M. Wessendorf,et al.  Multicolor laser scanning confocal immunofluorescence microscopy: practical application and limitations. , 1993, Methods in cell biology.

[76]  Cylindrical microlenses improve laser-diode beams , 1993 .

[77]  HeCd lasers offer economical blue and ultraviolet light , 1993 .

[78]  Compact fiber soliton lasers produce ultrashort pulses , 1993 .

[79]  M. Goodman,et al.  Rapid scanning confocal microscopy. , 1993, Methods in cell biology.

[80]  A. H. Guenther Optics damage constrains laser design and performance , 1993 .

[81]  J. Cannon,et al.  Ultraviolet lasers expand uses of confocal microscopes , 1993 .

[82]  J. K. Lucek,et al.  Modelocked fiber lasers promise high-speed data networks , 1993 .

[83]  Upconversion process creates compact blue/green lasers , 1993 .

[84]  S. Bains,et al.  Holographic optics: for when less is more , 1993 .

[85]  Nitrogen lasers produce ultraviolet light simply , 1993 .

[86]  J. Hecht Laser action in fibers promises a revolution in communications , 1993 .

[87]  M. D. Perry,et al.  Better materials trigger Cr:LiSAF laser development , 1993 .

[88]  John J. Lemasters,et al.  Optical microscopy: emerging methods and applications , 1993 .

[89]  J. Hecht Copper-vapor lasers find specialized applications , 1993 .

[90]  D. H. Sliney Laser safety concepts are changing , 1994 .

[91]  L. Marshall Biological monitoring foresen with ultraviolet light source , 1994 .

[92]  Sergio Fantini,et al.  LEDs in frequency-omain spectroscopy of tissues , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[93]  Enrico Gratton,et al.  Frequency domain time-resolved microscope using a fast-scan CCD camera , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[94]  E. J. Friebele,et al.  Fiberoptic sensors measure up for smart structures , 1994 .

[95]  How power-supply selection can improve laser-diode performance , 1994 .

[96]  L. W. Casperson How phase plates transform and control laser beams , 1994 .

[97]  W. Webb,et al.  Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity. , 1994, Applied optics.

[98]  Irl N. Duling,et al.  Compact Sources of Ultrashort Pulses , 1995 .

[99]  B. Tromberg,et al.  Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption. , 1996, Optics letters.

[100]  P. Anderson Safety first , 1997 .

[101]  Marvin J. Weber,et al.  Handbook of Laser Wavelengths , 1998 .

[102]  D. Wiersma,et al.  30-fs, cavity-dumped optical parametric oscillator. , 1998, Optics letters.

[103]  M W Berns,et al.  Cell Viability and DNA Denaturation Measurements by Two-Photon Fluorescence Excitation in CW Al:GaAs Diode Laser Optical Traps. , 1999, Journal of biomedical optics.

[104]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[105]  K J Halbhuber,et al.  Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes. , 1999, Optics letters.

[106]  Horst Weber,et al.  Laser Resonators: Novel Design and Development , 1999 .

[107]  Mara Prentiss,et al.  Inexpensive optical tweezers for undergraduate laboratories , 1999 .

[108]  Ulrich A. Russek,et al.  Pulse compression by use of deformable mirrors. , 1999, Optics letters.

[109]  Jerome Mertz,et al.  Membrane imaging by second-harmonic generation microscopy , 2000 .

[110]  M. Rajadhyaksha,et al.  Elucidating the pulsed-dye laser treatment of sebaceous hyperplasia in vivo with real-time confocal scanning laser microscopy. , 2000, Journal of the American Academy of Dermatology.

[111]  S. Monajembashi,et al.  Optical tweezers for confocal microscopy , 2000 .

[112]  G. Fuhr,et al.  Combined laser tweezers and dielectric field cage for the analysis of receptor‐ligand interactions on single cells , 2001, Electrophoresis.

[113]  S. Landgraf,et al.  Application of semiconductor light sources for investigations of photochemical reactions. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[114]  Bryan A. Tozer Revised safety standards to benefit laser design and use , 2001 .

[115]  Almantas Galvanauskas,et al.  Ultrafast lasers : technology and applications , 2002 .

[116]  John Bechhoefer,et al.  Faster, cheaper, safer optical tweezers for the undergraduate laboratory , 2002 .

[117]  M. Wessendorf,et al.  Multicolor laser scanning confocal immunofluorescence microscopy: practical application and limitations. , 2002, Methods in cell biology.

[118]  Ove Axner,et al.  Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. , 2002, Biophysical journal.

[119]  Yaron Silberberg,et al.  Third-harmonic microscopy with a titanium–sapphire laser , 2002 .

[120]  W. Webb,et al.  Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. , 2002, Biophysical journal.

[121]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[122]  Chi‐Kuang Sun,et al.  Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser. , 2003, Optics express.

[123]  J Mertz,et al.  Transmission confocal laser scanning microscopy with a virtual pinhole based on nonlinear detection. , 2003, Optics letters.

[124]  Hari Singh Nalwa,et al.  Handbook of Luminescence, Display Materials and Devices , 2003 .

[125]  980-nm picosecond fiber laser , 2003, IEEE Photonics Technology Letters.

[126]  William T. Silfvast,et al.  Laser Fundamentals: Preface to the Second Edition , 2004 .

[127]  M. Guina,et al.  Femtosecond neodymium-doped fiber laser operating in the 894-909-nm spectral range , 2004, IEEE Photonics Technology Letters.

[128]  CARS microscopy lights up lipids in living cells , 2004 .

[129]  Improving fluorescence confocal microscopy with cryogenically-cooled diode lasers. , 2004, Optics express.

[130]  the power of the pump , 2004 .

[131]  Efficient selection of focusing optics in non linear microscopy design through THG analysis. , 2004, Optics express.

[132]  M. Dantus,et al.  Multiphoton Intrapulse Interference 3: Probing Microscopic Chemical Environments , 2004 .

[133]  V. K. Kanz,et al.  End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling , 2004 .

[134]  Julian D. C. Jones,et al.  Handbook of Laser Technology and Applications , 2004 .

[135]  Gail McConnell,et al.  Confocal laser scanning fluorescence microscopy with a visible continuum source. , 2004, Optics express.

[136]  N. Hodgson,et al.  Laser Resonators and Beam Propagation , 2005 .

[137]  Tsung-Han Tsai,et al.  Two-photon fluorescence microscope with a hollow-core photonic crystal fiber , 2005, SPIE BiOS.

[138]  M. Arrigoni Femtosecond Laser Pulses in Biology: From Microscopy to Ablation and Micromanipulation , 2005 .

[139]  C. Dunsby,et al.  An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[140]  Chi‐Kuang Sun,et al.  Multiphoton confocal microscopy using a femtosecond Cr:Forsterite laser , 2006 .

[141]  K. Fujita [Two-photon laser scanning fluorescence microscopy]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.