Broadcast versus precise ephemerides: a multi-GNSS perspective

A consistent analysis of signal-in-space ranging errors (SISREs) is presented for all current satellite navigation systems, considering both global average values and worst-user-location statistics. The analysis is based on 1 year of broadcast ephemeris messages of the Global Positioning System (GPS), GLONASS, Galileo, BeiDou and QZSS collected with a near-global receiver network. Position and clock values derived from the navigation data are compared against precise orbit and clock products provided by the International GNSS Service and its multi-GNSS experiment. Satellite laser ranging measurements are used for a complementary and independent assessment of the orbit-only SISRE contribution. The need for proper consideration of antenna offsets is highlighted and block-/constellation-specific radial antenna offset values for the center-of-mass correction of broadcast orbits are derived. Likewise, the need for application of differential code biases in the comparison of broadcast and precise clock products is emphasized. For GPS, the analysis of the legacy navigation message is complemented by a discussion of the CNAV message performance based on the first CNAV test campaign in June 2013. Global average SISRE values for the individual constellations amount to 0.7 ± 0.02 m (GPS), 1.5 ± 0.1 m (BeiDou), 1.6 ± 0.3 m (Galileo), 1.9 ± 0.1 m (GLONASS), and 0.6 ± 0.2 m (QZSS) over a 12-month period in 2013/2014.

[1]  Horst-Dieter Fischer,et al.  ATTITUDE & ORBIT CONTROL SYSTEM FOR GALILEO IOV* , 2007 .

[2]  Peter Steigenberger,et al.  First Live Broadcast of GPS CNAV Messages , 2013 .

[3]  Peter Steigenberger,et al.  Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas , 2007 .

[4]  Qile Zhao,et al.  Initial results of precise orbit and clock determination for COMPASS navigation satellite system , 2013, Journal of Geodesy.

[5]  Wei Wang,et al.  A Study on the Beidou IGSO/MEO Satellite Orbit Determination and Prediction of the Different Yaw Control Mode , 2013 .

[6]  Frank van Graas,et al.  GPS Orbit and Clock Error Distributions , 2011 .

[7]  Oliver Montenbruck,et al.  The IGS MGEX Experiment as a Milestone for a Comprehensive Multi-GNSS Service , 2013 .

[8]  Werner Gurtner,et al.  RINEX - The Receiver Independent Exchange Format - Version 3.00 , 2007 .

[9]  B. Cooley GPS Program Updates , 2013 .

[10]  William A. Feess,et al.  The GPS Accuracy Improvement Initiative , 1997 .

[11]  Ahmed El-Mowafy,et al.  ARAIM for vertical guidance using GPS and BeiDou , 2013 .

[12]  Michael Meurer,et al.  A multi-technique approach for characterizing the SVN49 signal anomaly, part 2: chip shape analysis , 2011, GPS Solutions.

[13]  O. Montenbruck,et al.  IGS-MGEX: Preparing the Ground for Multi-Constellation GNSS Science , 2013 .

[14]  Peter Steigenberger,et al.  The BeiDou Navigation Message , 2013 .

[15]  S. Kotsopoulos,et al.  Design and Development , 2015 .

[16]  John F. Raquet,et al.  Broadcast vs. precise GPS ephemerides: a historical perspective , 2002 .

[17]  Michael R Pearlman,et al.  THE INTERNATIONAL LASER RANGING SERVICE , 2007 .

[18]  Pierre Héroux,et al.  Precise Point Positioning Using IGS Orbit and Clock Products , 2001, GPS Solutions.

[19]  Jon Little,et al.  Summary of accuracy improvements from the GPS Legacy Accuracy Improvement Initiative (L-AII) , 2007 .

[20]  Zhigang Hu,et al.  Study on Signal-In-Space Errors Calculation Method and Statistical Characterization of BeiDou Navigation Satellite System , 2013 .

[21]  Oliver Montenbruck,et al.  Code Biases in Multi-GNSS Point Positioning , 2013 .

[22]  Per Enge,et al.  Statistical Characterization of GLONASS Broadcast Ephemeris Errors , 2011 .

[23]  Sergey Revnivykh,et al.  GLONASS Status and Modernization , 2011 .

[24]  Michael Meurer,et al.  A multi-technique approach for characterizing the SVN49 signal anomaly, part 1: receiver tracking and IQ constellation , 2011, GPS Solutions.

[25]  Qiang Zhang,et al.  An Initial Evaluation About BDS Navigation Message Accuracy , 2013 .

[26]  Per Enge,et al.  Statistical characterization of GPS signal-in-space errors , 2011 .

[27]  H. Noda,et al.  Technical Verification Status of Quasi-Zenith Satellite System , 2012 .

[28]  Peter Steigenberger,et al.  Orbit and clock analysis of Compass GEO and IGSO satellites , 2013, Journal of Geodesy.

[29]  Peter Steigenberger,et al.  Differential Code Bias Estimation using Multi‐GNSS Observations and Global Ionosphere Maps , 2014 .

[30]  Peter Steigenberger,et al.  Short-term analysis of GNSS clocks , 2013, GPS Solutions.

[31]  Boubeker Belabbas,et al.  ARAIM Operational Performance Tested in Flight , 2014 .

[32]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[33]  Maik Uhlemann,et al.  GFZ Global Multi-GNSS Network and Data Processing Results , 2015 .

[34]  Harald Schuh,et al.  Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System , 2013, Sensors.

[35]  Noriyasu Inaba,et al.  Design and development of the first Quasi-Zenith Satellite attitude and orbit control system , 2009, 2009 IEEE Aerospace conference.

[36]  Juan Blanch,et al.  Demonstrations of Multi-constellation Advanced RAIM for Vertical Guidance Using GPS and GLONASS Signals , 2011 .

[37]  Hang Yin,et al.  Performance Analysis of L2 and L5 CNAV Broadcast Ephemeris for Orbit Calculation , 2014 .

[38]  Sergey Revnivykh GLONASS Ground Control Segment: Orbit, Clock, Time Scale and Geodesy Definition , 2012 .

[39]  Per K. Enge,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[40]  R. Lucas Rodriguez Galileo IOV Status and Results , 2013 .

[41]  Peter Steigenberger,et al.  First Demonstration of Galileo-Only Positioning , 2013 .

[42]  Rolf DachRalf,et al.  Improved antenna phase center models for GLONASS , 2011 .