Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials

[1]  S. Passerini,et al.  PEO ­ LiN ( SO 2 CF 2 CF 3 ) 2 Polymer Electrolytes V. Effect of Fillers on Ionic Transport Properties , 2004 .

[2]  Mario Conte,et al.  Assessment of high power HEV lead-acid battery advancements by comparative benchmarking with a European test procedure , 2003 .

[3]  J. Valenciano,et al.  Development of high power VRLA batteries using novel materials and processes , 2003 .

[4]  Andreas Züttel,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[5]  G. Sandrock,et al.  Catalyzed Complex Metal Hydrides , 2002 .

[6]  R. Irani Hydrogen Storage: High-Pressure Gas Containment , 2002 .

[7]  B. Fultz,et al.  Metallic Hydrides I: Hydrogen Storage and Other Gas- Phase Applications , 2002 .

[8]  Andreas Züttel,et al.  Hydrogen in Nanostructured, Carbon-Related, and Metallic Materials , 2002 .

[9]  Joachim Wolf,et al.  Liquid-Hydrogen Technology for Vehicles , 2002 .

[10]  Stefano Passerini,et al.  A New Synthetic Route for Preparing LiFePO4 with Enhanced Electrochemical Performance , 2002 .

[11]  Tsukasa Itou,et al.  State-of-the-art of alkaline rechargeable batteries , 2001 .

[12]  Bruno Scrosati,et al.  Progress in lithium polymer battery R&D , 2001 .

[13]  J. L. Sudworth,et al.  The sodium/nickel chloride (ZEBRA) battery , 2001 .

[14]  Marina Mastragostino,et al.  New trends in electrochemical supercapacitors , 2001 .

[15]  Y. Nishi Lithium ion secondary batteries; past 10 years and the future , 2001 .

[16]  Mario Conte,et al.  Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives , 2001 .

[17]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[18]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[19]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[20]  Hui-Ming Cheng,et al.  Hydrogen storage in carbon nanotubes , 2001 .

[21]  Bruno Scrosati,et al.  Nanomaterial-based Li-ion battery electrodes , 2001 .

[22]  J. Goodenough,et al.  Nanocrystalline Lithium Manganese Oxide Spinel Cathode for Rechargeable Lithium Batteries , 2001 .

[23]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[24]  Menahem Anderman,et al.  Advanced Batteries for Electric Vehicles: An Assessment of Performance, Cost, and Availability , 2000 .

[25]  R. Schulz,et al.  Recent developments in the applications of nanocrystalline materials to hydrogen technologies , 1999 .

[26]  T. A. Doyle,et al.  Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen , 1998 .

[27]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[28]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[29]  G. Sandrock,et al.  HYDRIDE DEVELOPMENT FOR HYDROGEN STORAGE , 1996 .

[30]  J. Dahn,et al.  Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries , 1999 .

[31]  F. G. Capponi,et al.  Ultracapacitor Tests for EV Applications: Introduction of New Equalisation Coefficients , 1999 .